Assessment of the impact of jet impingement technique on the energy efficiency of air-cooled BIPV/T roof tile
The paper concerns a numerical analysis of cooling of the hybrid photovoltaic (PV) modules dedicated to Building-Inte-grated Photovoltaic/Thermal (BIPV/T) systems. Attention was focused on the photovoltaic roof tiles, using a jet impinge-ment technique, in which the intensification of heat transfer...
Gespeichert in:
Veröffentlicht in: | Archives of thermodynamics 2024-01, Vol.45 (2), p.5-18 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng ; pol |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The paper concerns a numerical analysis of cooling of the hybrid photovoltaic (PV) modules dedicated to Building-Inte-grated Photovoltaic/Thermal (BIPV/T) systems. Attention was focused on the photovoltaic roof tiles, using a jet impinge-ment technique, in which the intensification of heat transfer is ensured by streams of air hitting the heat exchange partition. A series of numerical simulations were carried out to assess an influence of the distance of the nozzle outlet from the absorber surface on the values of selected thermal-hydraulic performance indicators and the electrical parameters of the roof tile. The results confirmed the high effectiveness of the proposed method. The best effect was obtained for the case in which the relative distance of the nozzle from the partition to the nozzle diameter was equal to 1. For the mentioned configuration, an over 4 times increase in the value of the heat transfer coefficient was obtained in relation to the reference variant of cooling roof tiles. At the same time, the relative increase in the value of the generated electrical power was from 2.9 to 7.8%, depending on the value of the Reynolds number characterising the flow. |
---|---|
ISSN: | 1231-0956 2083-6023 |
DOI: | 10.24425/ather.2024.150847 |