Multivariate Bicycle Codes
Quantum error correction suppresses noise in quantum systems to allow for high-precision computations. In this work, we introduce Multivariate Bicycle (MB) Quantum Low-Density Parity-Check (QLDPC) codes, via an extension of the framework developed by Bravyi et al. [Nature, 627, 778-782 (2024)] and p...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-08 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Quantum error correction suppresses noise in quantum systems to allow for high-precision computations. In this work, we introduce Multivariate Bicycle (MB) Quantum Low-Density Parity-Check (QLDPC) codes, via an extension of the framework developed by Bravyi et al. [Nature, 627, 778-782 (2024)] and particularly focus on Trivariate Bicycle (TB) codes. Unlike the weight-6 codes proposed in their study, we offer concrete examples of weight-4 and weight-5 TB-QLDPC codes which promise to be more amenable to near-term experimental setups. We show that our TB-QLDPC codes up to weight-6 have a bi-planar structure. Further, most of our new codes can also be arranged in a two-dimensional toric layout, and have substantially better encoding rates than comparable surface codes while offering similar error suppression capabilities. For example, we can encode 4 logical qubits with distance 5 into 30 physical qubits with weight-5 check measurements, while a surface code with these parameters requires 100 physical qubits. The high encoding rate and compact layout make our codes highly suitable candidates for near-term hardware implementations, paving the way for a realizable quantum error correction protocol. |
---|---|
ISSN: | 2331-8422 |