Necessary and sufficient conditions for optimal control of semilinear stochastic partial differential equations

Using a recently introduced representation of the second order adjoint state as the solution of a function-valued backward stochastic partial differential equation (SPDE), we calculate the viscosity super- and subdifferential of the value function evaluated along an optimal trajectory for controlled...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of applied probability 2024-06, Vol.34 (3), p.3251
Hauptverfasser: Stannat, Wilhelm, Wessels, Lukas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using a recently introduced representation of the second order adjoint state as the solution of a function-valued backward stochastic partial differential equation (SPDE), we calculate the viscosity super- and subdifferential of the value function evaluated along an optimal trajectory for controlled semilinear SPDEs. This establishes the well-known connection between Pontryagin's maximum principle and dynamic programming within the framework of viscosity solutions. As a corollary, we derive that the correction term in the stochastic Hamiltonian arising in nonsmooth stochastic control problems is nonpositive. These results directly lead us to a stochastic verification theorem for fully nonlinear Hamilton–Jacobi–Bellman equations in the framework of viscosity solutions.
ISSN:1050-5164
2168-8737
DOI:10.1214/23-AAP2038