Flexible Bayesian quantile regression based on the generalized asymmetric Huberised-type distribution

To enhance the robustness and flexibility of Bayesian quantile regression models using the asymmetric Laplace or asymmetric Huberised-type (AH) distribution, which lacks changeable mode, diminishing influence of outliers, and asymmetry under median regression, we propose a new generalized AH distrib...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics and computing 2024-08, Vol.34 (4), Article 144
Hauptverfasser: Hu, Weitao, Zhang, Weiping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To enhance the robustness and flexibility of Bayesian quantile regression models using the asymmetric Laplace or asymmetric Huberised-type (AH) distribution, which lacks changeable mode, diminishing influence of outliers, and asymmetry under median regression, we propose a new generalized AH distribution which is achieved through a hierarchical mixture representation, thus leading to a flexible Bayesian Huberised quantile regression framework. With many parameters in the model, we develop an efficient Markov chain Monte Carlo procedure based on the Metropolis-within-Gibbs sampling algorithm. The robustness and flexibility of the new distribution are examined through intensive simulation studies and application to two real data sets.
ISSN:0960-3174
1573-1375
DOI:10.1007/s11222-024-10453-1