Inhomogeneity-induced wavenumber diffusion

Inertia-gravity waves are scattered by background flows as a result of Doppler shift by a non-uniform velocity. In the WKB regime, the scattering process reduces to a diffusion in spectral space. Other inhomogeneities the waves encounter, such as density variations, also cause scattering and spectra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-06
Hauptverfasser: Cox, Michael R, Kafiabad, Hossein A, Vanneste, Jacques
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Cox, Michael R
Kafiabad, Hossein A
Vanneste, Jacques
description Inertia-gravity waves are scattered by background flows as a result of Doppler shift by a non-uniform velocity. In the WKB regime, the scattering process reduces to a diffusion in spectral space. Other inhomogeneities the waves encounter, such as density variations, also cause scattering and spectral diffusion. We generalise the spectral diffusion equation to account for these inhomogeneities. We apply the result to the rotating shallow water system, for which height inhomogeneities arise from velocity inhomogeneities through geostrophy, and to the Boussinesq system for which buoyancy inhomogeneities arise similarly. We compare the contributions that height and buoyancy variations make to the spectral diffusion with the contribution of the Doppler shift. In both systems, we find regimes where all contributions are significant. We support our findings with exact solutions of the diffusion equation and with ray tracing simulations in the shallow water case.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3072356153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3072356153</sourcerecordid><originalsourceid>FETCH-proquest_journals_30723561533</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQ8szLyM_NT0_NS80sqdTNzEspTU5NUShPLEvNK81NSi1SSMlMSystzszP42FgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeGMDcyNjUzNDU2Nj4lQBAHCPMaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072356153</pqid></control><display><type>article</type><title>Inhomogeneity-induced wavenumber diffusion</title><source>Free E- Journals</source><creator>Cox, Michael R ; Kafiabad, Hossein A ; Vanneste, Jacques</creator><creatorcontrib>Cox, Michael R ; Kafiabad, Hossein A ; Vanneste, Jacques</creatorcontrib><description>Inertia-gravity waves are scattered by background flows as a result of Doppler shift by a non-uniform velocity. In the WKB regime, the scattering process reduces to a diffusion in spectral space. Other inhomogeneities the waves encounter, such as density variations, also cause scattering and spectral diffusion. We generalise the spectral diffusion equation to account for these inhomogeneities. We apply the result to the rotating shallow water system, for which height inhomogeneities arise from velocity inhomogeneities through geostrophy, and to the Boussinesq system for which buoyancy inhomogeneities arise similarly. We compare the contributions that height and buoyancy variations make to the spectral diffusion with the contribution of the Doppler shift. In both systems, we find regimes where all contributions are significant. We support our findings with exact solutions of the diffusion equation and with ray tracing simulations in the shallow water case.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Boussinesq equations ; Buoyancy ; Doppler effect ; Exact solutions ; Gravity waves ; Inhomogeneity ; Ray tracing ; Scattering ; Shallow water ; Wavelengths</subject><ispartof>arXiv.org, 2024-06</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>782,786</link.rule.ids></links><search><creatorcontrib>Cox, Michael R</creatorcontrib><creatorcontrib>Kafiabad, Hossein A</creatorcontrib><creatorcontrib>Vanneste, Jacques</creatorcontrib><title>Inhomogeneity-induced wavenumber diffusion</title><title>arXiv.org</title><description>Inertia-gravity waves are scattered by background flows as a result of Doppler shift by a non-uniform velocity. In the WKB regime, the scattering process reduces to a diffusion in spectral space. Other inhomogeneities the waves encounter, such as density variations, also cause scattering and spectral diffusion. We generalise the spectral diffusion equation to account for these inhomogeneities. We apply the result to the rotating shallow water system, for which height inhomogeneities arise from velocity inhomogeneities through geostrophy, and to the Boussinesq system for which buoyancy inhomogeneities arise similarly. We compare the contributions that height and buoyancy variations make to the spectral diffusion with the contribution of the Doppler shift. In both systems, we find regimes where all contributions are significant. We support our findings with exact solutions of the diffusion equation and with ray tracing simulations in the shallow water case.</description><subject>Boussinesq equations</subject><subject>Buoyancy</subject><subject>Doppler effect</subject><subject>Exact solutions</subject><subject>Gravity waves</subject><subject>Inhomogeneity</subject><subject>Ray tracing</subject><subject>Scattering</subject><subject>Shallow water</subject><subject>Wavelengths</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQ8szLyM_NT0_NS80sqdTNzEspTU5NUShPLEvNK81NSi1SSMlMSystzszP42FgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeGMDcyNjUzNDU2Nj4lQBAHCPMaA</recordid><startdate>20240624</startdate><enddate>20240624</enddate><creator>Cox, Michael R</creator><creator>Kafiabad, Hossein A</creator><creator>Vanneste, Jacques</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240624</creationdate><title>Inhomogeneity-induced wavenumber diffusion</title><author>Cox, Michael R ; Kafiabad, Hossein A ; Vanneste, Jacques</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30723561533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boussinesq equations</topic><topic>Buoyancy</topic><topic>Doppler effect</topic><topic>Exact solutions</topic><topic>Gravity waves</topic><topic>Inhomogeneity</topic><topic>Ray tracing</topic><topic>Scattering</topic><topic>Shallow water</topic><topic>Wavelengths</topic><toplevel>online_resources</toplevel><creatorcontrib>Cox, Michael R</creatorcontrib><creatorcontrib>Kafiabad, Hossein A</creatorcontrib><creatorcontrib>Vanneste, Jacques</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cox, Michael R</au><au>Kafiabad, Hossein A</au><au>Vanneste, Jacques</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Inhomogeneity-induced wavenumber diffusion</atitle><jtitle>arXiv.org</jtitle><date>2024-06-24</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Inertia-gravity waves are scattered by background flows as a result of Doppler shift by a non-uniform velocity. In the WKB regime, the scattering process reduces to a diffusion in spectral space. Other inhomogeneities the waves encounter, such as density variations, also cause scattering and spectral diffusion. We generalise the spectral diffusion equation to account for these inhomogeneities. We apply the result to the rotating shallow water system, for which height inhomogeneities arise from velocity inhomogeneities through geostrophy, and to the Boussinesq system for which buoyancy inhomogeneities arise similarly. We compare the contributions that height and buoyancy variations make to the spectral diffusion with the contribution of the Doppler shift. In both systems, we find regimes where all contributions are significant. We support our findings with exact solutions of the diffusion equation and with ray tracing simulations in the shallow water case.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_3072356153
source Free E- Journals
subjects Boussinesq equations
Buoyancy
Doppler effect
Exact solutions
Gravity waves
Inhomogeneity
Ray tracing
Scattering
Shallow water
Wavelengths
title Inhomogeneity-induced wavenumber diffusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-06T00%3A48%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Inhomogeneity-induced%20wavenumber%20diffusion&rft.jtitle=arXiv.org&rft.au=Cox,%20Michael%20R&rft.date=2024-06-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3072356153%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3072356153&rft_id=info:pmid/&rfr_iscdi=true