Inhomogeneity-induced wavenumber diffusion
Inertia-gravity waves are scattered by background flows as a result of Doppler shift by a non-uniform velocity. In the WKB regime, the scattering process reduces to a diffusion in spectral space. Other inhomogeneities the waves encounter, such as density variations, also cause scattering and spectra...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-06 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Inertia-gravity waves are scattered by background flows as a result of Doppler shift by a non-uniform velocity. In the WKB regime, the scattering process reduces to a diffusion in spectral space. Other inhomogeneities the waves encounter, such as density variations, also cause scattering and spectral diffusion. We generalise the spectral diffusion equation to account for these inhomogeneities. We apply the result to the rotating shallow water system, for which height inhomogeneities arise from velocity inhomogeneities through geostrophy, and to the Boussinesq system for which buoyancy inhomogeneities arise similarly. We compare the contributions that height and buoyancy variations make to the spectral diffusion with the contribution of the Doppler shift. In both systems, we find regimes where all contributions are significant. We support our findings with exact solutions of the diffusion equation and with ray tracing simulations in the shallow water case. |
---|---|
ISSN: | 2331-8422 |