LMA-EEGNet: A Lightweight Multi-Attention Network for Neonatal Seizure Detection Using EEG signals
Neonatal epilepsy is an early postnatal brain disorder, and automatic seizure detection is crucial for timely diagnosis and treatment to reduce potential brain damage. This work proposes a novel Lightweight Multi-Attention Network, LMA-EEGNet, for diagnosing neonatal epileptic seizures from multi-ch...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2024-06, Vol.13 (12), p.2354 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Neonatal epilepsy is an early postnatal brain disorder, and automatic seizure detection is crucial for timely diagnosis and treatment to reduce potential brain damage. This work proposes a novel Lightweight Multi-Attention Network, LMA-EEGNet, for diagnosing neonatal epileptic seizures from multi-channel EEG signals employing dilated depthwise separable convolution (DDS Conv) for feature extraction and using pointwise convolution followed by global average pooling for classification. The proposed approach substantially reduces the model size, number of parameters, and computational complexity, which are crucial for real-time detection and clinical diagnosis of neonatal epileptic seizures. LMA-EEGNet integrates temporal and spectral features through distinct temporal and spectral branches. The temporal branch uses DDS Conv to extract temporal features, enhanced by a channel attention mechanism. The spectral branch utilizes similar convolutions alongside a spatial attention mechanism to highlight key frequency components. Outputs from both branches are merged and processed through a pointwise convolution layer and a global average pooling layer for efficient neonatal seizure detection. Experimental results show that our model, with only 2471 parameters and a size of 23 KB, achieves an accuracy of 95.71% and an AUC of 0.9862, demonstrating its potential for practical deployment. This study provides an effective deep learning solution for the early detection of neonatal epileptic seizures, improving diagnostic accuracy and timeliness. |
---|---|
ISSN: | 2079-9292 2079-9292 |
DOI: | 10.3390/electronics13122354 |