Lipschitz constants for a hyperbolic type metric under Möbius transformations
Let D be a nonempty open set in a metric space ( X, d ) with ∂D ≠ Ø. Define h D , c ( x , y ) = log ( 1 + c d ( x , y ) d D ( x ) d D ( y ) ) . where d D ( x ) = d ( x, ∂D ) is the distance from x to the boundary of D . For every c ⩾ 2, h D,c is a metric. We study the sharp Lipschitz constants for t...
Gespeichert in:
Veröffentlicht in: | Czechoslovak Mathematical Journal 2024, Vol.74 (2), p.445-460 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
D
be a nonempty open set in a metric space (
X, d
) with
∂D
≠ Ø. Define
h
D
,
c
(
x
,
y
)
=
log
(
1
+
c
d
(
x
,
y
)
d
D
(
x
)
d
D
(
y
)
)
.
where
d
D
(
x
) =
d
(
x, ∂D
) is the distance from
x
to the boundary of
D
. For every
c
⩾ 2,
h
D,c
is a metric. We study the sharp Lipschitz constants for the metric
h
D,c
under Möbius transformations of the unit ball, the upper half space, and the punctured unit ball. |
---|---|
ISSN: | 0011-4642 1572-9141 |
DOI: | 10.21136/CMJ.2024.0366-23 |