Prediction and modeling of mechanical properties of concrete modified with ceramic waste using artificial neural network and regression model

Over two centuries, concrete has been crucial to building. Thus, eco-friendly concrete is being developed. Emulating these tangible traits has recently gained popularity. Ceramic waste concrete’s mechanical properties were modeled in this study. Ceramic waste percentages ranged from 5 to 20%. Compre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal, image and video processing image and video processing, 2024, Vol.18 (Suppl 1), p.183-197
Hauptverfasser: Kshirsagar, Pravin R., Upreti, Kamal, Kushwah, Virendra Singh, Hundekari, Sheela, Jain, Dhyanendra, Pandey, Amit Kumar, Parashar, Jyoti
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Over two centuries, concrete has been crucial to building. Thus, eco-friendly concrete is being developed. Emulating these tangible traits has recently gained popularity. Ceramic waste concrete’s mechanical properties were modeled in this study. Ceramic waste percentages ranged from 5 to 20%. Compressive and tensile concrete strengths were modeled. To predict concrete hardness, regression modeling and artificial neural network (ANN) were used. Model performance was evaluated using prediction coefficients and root-mean-square error (RMSE). ANN models outperformed linear prediction with a coefficient for determination ( R 2 ) of 0.97. ANN models achieved root-mean-square errors (RMSEs) of 1.22 MPa, 1.21 MPa, and 1.022 MPa after 7, 14, and 28 days of retraining, respectively. Linear regression model showed RMSE values of 1.21, 1.32, and 1.27 MPa at 7, 14, and 28 days, respectively. In determining the compressive and tensile strength, the R 2 was 0.70, meanwhile the ANN model achieved 0.87. Given its accuracy in predicting the strength qualities of ceramics cement and structural stiffness, the ANN model presents a promising tool for representing various types of concrete.
ISSN:1863-1703
1863-1711
DOI:10.1007/s11760-024-03142-z