Design Principle of Insulating Surface Protective Layers for Metallic Zn Anodes: A Case Study of ZrO2
Aqueous Zn batteries, which use metallic Zn as anodes, have gained significant attention due to their affordability and high safety standards. However, these Zn anodes are plagued by issues such as Zn dendritic growth and side reactions, including corrosion and hydrogen evolution. One straightforwar...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2024-06, Vol.14 (24), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aqueous Zn batteries, which use metallic Zn as anodes, have gained significant attention due to their affordability and high safety standards. However, these Zn anodes are plagued by issues such as Zn dendritic growth and side reactions, including corrosion and hydrogen evolution. One straightforward yet effective approach to mitigate these issues is to apply protective coatings to the Zn anodes to enhance their reversibility. It is generally believed that these protective layers should have a high affinity for Zn. Contrarily, this study proposes that non‐conductive coatings should form a strong binding with H+ ions while maintaining a weaker interaction with Zn2+ ions, thereby ensuring a higher selectivity for H+ over Zn2+. This concept is illustrated using zirconium dioxide (ZrO2), an ionic conductor that meets these criteria and effectively curbs side reactions and dendritic growth of Zn. Remarkably, Zn anodes coated with ZrO2 layer demonstrate a lifespan exceeding 6000 h at 1 mA cm−2 and 1 mAh cm−2, significantly outperforming uncoated ones, which last |
---|---|
ISSN: | 1614-6832 1614-6840 |
DOI: | 10.1002/aenm.202401018 |