Experimental investigation on the effects of natural convection on cylindrical LiFePO4 battery module for energy storage application

The experiments with a LiFePO4 battery pack operating at room temperature and with various charge and discharge rates to analyze its durability are described in this study. At a temperature of 23°C with natural convection, the thermal performance of a cylindrical (LFP) battery is experimentally stud...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy storage (Hoboken, N.J. : 2019) N.J. : 2019), 2024-06, Vol.6 (4), p.n/a
Hauptverfasser: P., Jayapradha, Barik, Debabrata
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The experiments with a LiFePO4 battery pack operating at room temperature and with various charge and discharge rates to analyze its durability are described in this study. At a temperature of 23°C with natural convection, the thermal performance of a cylindrical (LFP) battery is experimentally studied. In this study, the battery is fully charged. After reaching 14.6 V, the battery is charged at a current of 4.8 A for 10 min to allow for stabilization. The battery is then depleted at 4.8 A until its voltage hits 10.5 V, followed by an additional 10‐min resting time. The processes reached their highest and lowest temperatures, respectively, were 29°C and 22°C. The battery is charged for a total of 46.877 Ampere‐hours (Ah) during the course of the 10‐h operation at a constant current of 4.8 A. Similar to this, a 10‐h discharge operation is carried out with a constant current of 4.8 A, yielding a discharge of 47.207 Ah. The processes reached their highest and lowest temperatures, respectively, were 36°C and 24°C. Another possibility is to charge the battery at a steady 24 A until the voltage reaches 14.6 V, then let it rest for 10 min, a further 10‐min rest period is added after it is discharged at 24 A until its voltage hits 10.5 V. After 5 h of charging at 24 A, the capacity is 46.958 Ah, and after 5 h and 47.51 min of discharging at 24 A, the capacity is 47 Ah. The processes reached their highest and lowest temperatures, respectively, were 49°C and 33°C.
ISSN:2578-4862
2578-4862
DOI:10.1002/est2.663