Projectively induced Kähler cones over regular Sasakian manifolds

Motivated by a conjecture in Loi et al. (Math Zeit 290:599–613, 2018) we prove that the Kähler cone over a regular complete Sasakian manifold is Ricci-flat and projectively induced if and only if it is flat. We also obtain that, up to D a —homothetic transformations, Kähler cones over homogeneous co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geometriae dedicata 2024-08, Vol.218 (4), Article 85
Hauptverfasser: Marini, Stefano, Tardini, Nicoletta, Zedda, Michela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Geometriae dedicata
container_volume 218
creator Marini, Stefano
Tardini, Nicoletta
Zedda, Michela
description Motivated by a conjecture in Loi et al. (Math Zeit 290:599–613, 2018) we prove that the Kähler cone over a regular complete Sasakian manifold is Ricci-flat and projectively induced if and only if it is flat. We also obtain that, up to D a —homothetic transformations, Kähler cones over homogeneous compact Sasakian manifolds are projectively induced. As main tool we provide a relation between the Kähler potentials of the transverse Kähler metric and of the cone metric.
doi_str_mv 10.1007/s10711-024-00935-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3071987483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3071987483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-f0f26ba0cec7e10d98222d1192aa22d680f5cda1275f10877ad625ded0012a743</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wisTbMOHGcLKHiJSqBBKwt40dJSeNiN1X7P_wJP4YhSOxYzSzOvaM5hBwjnCKAOIsIApECKyhAnXO62SEj5ILRGstql4wAipJywfk-OYhxDokSgo3IxUPwc6tXzdq226zpTK-tye4-P15bGzLtOxszv05rsLO-VSF7VFG9NarLFqprnG9NPCR7TrXRHv3OMXm-unya3NDp_fXt5HxKNSuKFXXgWPmiQFstLIKpK8aYQayZUmkpK3BcG4VMcIdQCaFMybixBgCZEkU-JidD7zL4997GlZz7PnTppMzT93UliipPFBsoHXyMwTq5DM1Cha1EkN-u5OBKJlfyx5XcpFA-hGKCu5kNf9X_pL4ATA9tSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3071987483</pqid></control><display><type>article</type><title>Projectively induced Kähler cones over regular Sasakian manifolds</title><source>SpringerNature Complete Journals</source><creator>Marini, Stefano ; Tardini, Nicoletta ; Zedda, Michela</creator><creatorcontrib>Marini, Stefano ; Tardini, Nicoletta ; Zedda, Michela</creatorcontrib><description>Motivated by a conjecture in Loi et al. (Math Zeit 290:599–613, 2018) we prove that the Kähler cone over a regular complete Sasakian manifold is Ricci-flat and projectively induced if and only if it is flat. We also obtain that, up to D a —homothetic transformations, Kähler cones over homogeneous compact Sasakian manifolds are projectively induced. As main tool we provide a relation between the Kähler potentials of the transverse Kähler metric and of the cone metric.</description><identifier>ISSN: 0046-5755</identifier><identifier>EISSN: 1572-9168</identifier><identifier>DOI: 10.1007/s10711-024-00935-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algebraic Geometry ; Cones ; Convex and Discrete Geometry ; Differential Geometry ; Hyperbolic Geometry ; Manifolds ; Mathematics ; Mathematics and Statistics ; Original Paper ; Projective Geometry ; Topology</subject><ispartof>Geometriae dedicata, 2024-08, Vol.218 (4), Article 85</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-f0f26ba0cec7e10d98222d1192aa22d680f5cda1275f10877ad625ded0012a743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10711-024-00935-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10711-024-00935-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Marini, Stefano</creatorcontrib><creatorcontrib>Tardini, Nicoletta</creatorcontrib><creatorcontrib>Zedda, Michela</creatorcontrib><title>Projectively induced Kähler cones over regular Sasakian manifolds</title><title>Geometriae dedicata</title><addtitle>Geom Dedicata</addtitle><description>Motivated by a conjecture in Loi et al. (Math Zeit 290:599–613, 2018) we prove that the Kähler cone over a regular complete Sasakian manifold is Ricci-flat and projectively induced if and only if it is flat. We also obtain that, up to D a —homothetic transformations, Kähler cones over homogeneous compact Sasakian manifolds are projectively induced. As main tool we provide a relation between the Kähler potentials of the transverse Kähler metric and of the cone metric.</description><subject>Algebraic Geometry</subject><subject>Cones</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Hyperbolic Geometry</subject><subject>Manifolds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Projective Geometry</subject><subject>Topology</subject><issn>0046-5755</issn><issn>1572-9168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kMtOwzAQRS0EEqXwA6wisTbMOHGcLKHiJSqBBKwt40dJSeNiN1X7P_wJP4YhSOxYzSzOvaM5hBwjnCKAOIsIApECKyhAnXO62SEj5ILRGstql4wAipJywfk-OYhxDokSgo3IxUPwc6tXzdq226zpTK-tye4-P15bGzLtOxszv05rsLO-VSF7VFG9NarLFqprnG9NPCR7TrXRHv3OMXm-unya3NDp_fXt5HxKNSuKFXXgWPmiQFstLIKpK8aYQayZUmkpK3BcG4VMcIdQCaFMybixBgCZEkU-JidD7zL4997GlZz7PnTppMzT93UliipPFBsoHXyMwTq5DM1Cha1EkN-u5OBKJlfyx5XcpFA-hGKCu5kNf9X_pL4ATA9tSg</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Marini, Stefano</creator><creator>Tardini, Nicoletta</creator><creator>Zedda, Michela</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240801</creationdate><title>Projectively induced Kähler cones over regular Sasakian manifolds</title><author>Marini, Stefano ; Tardini, Nicoletta ; Zedda, Michela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-f0f26ba0cec7e10d98222d1192aa22d680f5cda1275f10877ad625ded0012a743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebraic Geometry</topic><topic>Cones</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Hyperbolic Geometry</topic><topic>Manifolds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Projective Geometry</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marini, Stefano</creatorcontrib><creatorcontrib>Tardini, Nicoletta</creatorcontrib><creatorcontrib>Zedda, Michela</creatorcontrib><collection>Springer_OA刊</collection><collection>CrossRef</collection><jtitle>Geometriae dedicata</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marini, Stefano</au><au>Tardini, Nicoletta</au><au>Zedda, Michela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Projectively induced Kähler cones over regular Sasakian manifolds</atitle><jtitle>Geometriae dedicata</jtitle><stitle>Geom Dedicata</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>218</volume><issue>4</issue><artnum>85</artnum><issn>0046-5755</issn><eissn>1572-9168</eissn><abstract>Motivated by a conjecture in Loi et al. (Math Zeit 290:599–613, 2018) we prove that the Kähler cone over a regular complete Sasakian manifold is Ricci-flat and projectively induced if and only if it is flat. We also obtain that, up to D a —homothetic transformations, Kähler cones over homogeneous compact Sasakian manifolds are projectively induced. As main tool we provide a relation between the Kähler potentials of the transverse Kähler metric and of the cone metric.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10711-024-00935-x</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0046-5755
ispartof Geometriae dedicata, 2024-08, Vol.218 (4), Article 85
issn 0046-5755
1572-9168
language eng
recordid cdi_proquest_journals_3071987483
source SpringerNature Complete Journals
subjects Algebraic Geometry
Cones
Convex and Discrete Geometry
Differential Geometry
Hyperbolic Geometry
Manifolds
Mathematics
Mathematics and Statistics
Original Paper
Projective Geometry
Topology
title Projectively induced Kähler cones over regular Sasakian manifolds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A21%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Projectively%20induced%20K%C3%A4hler%20cones%20over%20regular%20Sasakian%20manifolds&rft.jtitle=Geometriae%20dedicata&rft.au=Marini,%20Stefano&rft.date=2024-08-01&rft.volume=218&rft.issue=4&rft.artnum=85&rft.issn=0046-5755&rft.eissn=1572-9168&rft_id=info:doi/10.1007/s10711-024-00935-x&rft_dat=%3Cproquest_cross%3E3071987483%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3071987483&rft_id=info:pmid/&rfr_iscdi=true