Projectively induced Kähler cones over regular Sasakian manifolds
Motivated by a conjecture in Loi et al. (Math Zeit 290:599–613, 2018) we prove that the Kähler cone over a regular complete Sasakian manifold is Ricci-flat and projectively induced if and only if it is flat. We also obtain that, up to D a —homothetic transformations, Kähler cones over homogeneous co...
Gespeichert in:
Veröffentlicht in: | Geometriae dedicata 2024-08, Vol.218 (4), Article 85 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Geometriae dedicata |
container_volume | 218 |
creator | Marini, Stefano Tardini, Nicoletta Zedda, Michela |
description | Motivated by a conjecture in Loi et al. (Math Zeit 290:599–613, 2018) we prove that the Kähler cone over a regular complete Sasakian manifold is Ricci-flat and projectively induced if and only if it is flat. We also obtain that, up to
D
a
—homothetic transformations, Kähler cones over homogeneous compact Sasakian manifolds are projectively induced. As main tool we provide a relation between the Kähler potentials of the transverse Kähler metric and of the cone metric. |
doi_str_mv | 10.1007/s10711-024-00935-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3071987483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3071987483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-f0f26ba0cec7e10d98222d1192aa22d680f5cda1275f10877ad625ded0012a743</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wisTbMOHGcLKHiJSqBBKwt40dJSeNiN1X7P_wJP4YhSOxYzSzOvaM5hBwjnCKAOIsIApECKyhAnXO62SEj5ILRGstql4wAipJywfk-OYhxDokSgo3IxUPwc6tXzdq226zpTK-tye4-P15bGzLtOxszv05rsLO-VSF7VFG9NarLFqprnG9NPCR7TrXRHv3OMXm-unya3NDp_fXt5HxKNSuKFXXgWPmiQFstLIKpK8aYQayZUmkpK3BcG4VMcIdQCaFMybixBgCZEkU-JidD7zL4997GlZz7PnTppMzT93UliipPFBsoHXyMwTq5DM1Cha1EkN-u5OBKJlfyx5XcpFA-hGKCu5kNf9X_pL4ATA9tSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3071987483</pqid></control><display><type>article</type><title>Projectively induced Kähler cones over regular Sasakian manifolds</title><source>SpringerNature Complete Journals</source><creator>Marini, Stefano ; Tardini, Nicoletta ; Zedda, Michela</creator><creatorcontrib>Marini, Stefano ; Tardini, Nicoletta ; Zedda, Michela</creatorcontrib><description>Motivated by a conjecture in Loi et al. (Math Zeit 290:599–613, 2018) we prove that the Kähler cone over a regular complete Sasakian manifold is Ricci-flat and projectively induced if and only if it is flat. We also obtain that, up to
D
a
—homothetic transformations, Kähler cones over homogeneous compact Sasakian manifolds are projectively induced. As main tool we provide a relation between the Kähler potentials of the transverse Kähler metric and of the cone metric.</description><identifier>ISSN: 0046-5755</identifier><identifier>EISSN: 1572-9168</identifier><identifier>DOI: 10.1007/s10711-024-00935-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algebraic Geometry ; Cones ; Convex and Discrete Geometry ; Differential Geometry ; Hyperbolic Geometry ; Manifolds ; Mathematics ; Mathematics and Statistics ; Original Paper ; Projective Geometry ; Topology</subject><ispartof>Geometriae dedicata, 2024-08, Vol.218 (4), Article 85</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-f0f26ba0cec7e10d98222d1192aa22d680f5cda1275f10877ad625ded0012a743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10711-024-00935-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10711-024-00935-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Marini, Stefano</creatorcontrib><creatorcontrib>Tardini, Nicoletta</creatorcontrib><creatorcontrib>Zedda, Michela</creatorcontrib><title>Projectively induced Kähler cones over regular Sasakian manifolds</title><title>Geometriae dedicata</title><addtitle>Geom Dedicata</addtitle><description>Motivated by a conjecture in Loi et al. (Math Zeit 290:599–613, 2018) we prove that the Kähler cone over a regular complete Sasakian manifold is Ricci-flat and projectively induced if and only if it is flat. We also obtain that, up to
D
a
—homothetic transformations, Kähler cones over homogeneous compact Sasakian manifolds are projectively induced. As main tool we provide a relation between the Kähler potentials of the transverse Kähler metric and of the cone metric.</description><subject>Algebraic Geometry</subject><subject>Cones</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Hyperbolic Geometry</subject><subject>Manifolds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Projective Geometry</subject><subject>Topology</subject><issn>0046-5755</issn><issn>1572-9168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kMtOwzAQRS0EEqXwA6wisTbMOHGcLKHiJSqBBKwt40dJSeNiN1X7P_wJP4YhSOxYzSzOvaM5hBwjnCKAOIsIApECKyhAnXO62SEj5ILRGstql4wAipJywfk-OYhxDokSgo3IxUPwc6tXzdq226zpTK-tye4-P15bGzLtOxszv05rsLO-VSF7VFG9NarLFqprnG9NPCR7TrXRHv3OMXm-unya3NDp_fXt5HxKNSuKFXXgWPmiQFstLIKpK8aYQayZUmkpK3BcG4VMcIdQCaFMybixBgCZEkU-JidD7zL4997GlZz7PnTppMzT93UliipPFBsoHXyMwTq5DM1Cha1EkN-u5OBKJlfyx5XcpFA-hGKCu5kNf9X_pL4ATA9tSg</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Marini, Stefano</creator><creator>Tardini, Nicoletta</creator><creator>Zedda, Michela</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240801</creationdate><title>Projectively induced Kähler cones over regular Sasakian manifolds</title><author>Marini, Stefano ; Tardini, Nicoletta ; Zedda, Michela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-f0f26ba0cec7e10d98222d1192aa22d680f5cda1275f10877ad625ded0012a743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebraic Geometry</topic><topic>Cones</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Hyperbolic Geometry</topic><topic>Manifolds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Projective Geometry</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marini, Stefano</creatorcontrib><creatorcontrib>Tardini, Nicoletta</creatorcontrib><creatorcontrib>Zedda, Michela</creatorcontrib><collection>Springer_OA刊</collection><collection>CrossRef</collection><jtitle>Geometriae dedicata</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marini, Stefano</au><au>Tardini, Nicoletta</au><au>Zedda, Michela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Projectively induced Kähler cones over regular Sasakian manifolds</atitle><jtitle>Geometriae dedicata</jtitle><stitle>Geom Dedicata</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>218</volume><issue>4</issue><artnum>85</artnum><issn>0046-5755</issn><eissn>1572-9168</eissn><abstract>Motivated by a conjecture in Loi et al. (Math Zeit 290:599–613, 2018) we prove that the Kähler cone over a regular complete Sasakian manifold is Ricci-flat and projectively induced if and only if it is flat. We also obtain that, up to
D
a
—homothetic transformations, Kähler cones over homogeneous compact Sasakian manifolds are projectively induced. As main tool we provide a relation between the Kähler potentials of the transverse Kähler metric and of the cone metric.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10711-024-00935-x</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0046-5755 |
ispartof | Geometriae dedicata, 2024-08, Vol.218 (4), Article 85 |
issn | 0046-5755 1572-9168 |
language | eng |
recordid | cdi_proquest_journals_3071987483 |
source | SpringerNature Complete Journals |
subjects | Algebraic Geometry Cones Convex and Discrete Geometry Differential Geometry Hyperbolic Geometry Manifolds Mathematics Mathematics and Statistics Original Paper Projective Geometry Topology |
title | Projectively induced Kähler cones over regular Sasakian manifolds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A21%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Projectively%20induced%20K%C3%A4hler%20cones%20over%20regular%20Sasakian%20manifolds&rft.jtitle=Geometriae%20dedicata&rft.au=Marini,%20Stefano&rft.date=2024-08-01&rft.volume=218&rft.issue=4&rft.artnum=85&rft.issn=0046-5755&rft.eissn=1572-9168&rft_id=info:doi/10.1007/s10711-024-00935-x&rft_dat=%3Cproquest_cross%3E3071987483%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3071987483&rft_id=info:pmid/&rfr_iscdi=true |