Projectively induced Kähler cones over regular Sasakian manifolds
Motivated by a conjecture in Loi et al. (Math Zeit 290:599–613, 2018) we prove that the Kähler cone over a regular complete Sasakian manifold is Ricci-flat and projectively induced if and only if it is flat. We also obtain that, up to D a —homothetic transformations, Kähler cones over homogeneous co...
Gespeichert in:
Veröffentlicht in: | Geometriae dedicata 2024-08, Vol.218 (4), Article 85 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Motivated by a conjecture in Loi et al. (Math Zeit 290:599–613, 2018) we prove that the Kähler cone over a regular complete Sasakian manifold is Ricci-flat and projectively induced if and only if it is flat. We also obtain that, up to
D
a
—homothetic transformations, Kähler cones over homogeneous compact Sasakian manifolds are projectively induced. As main tool we provide a relation between the Kähler potentials of the transverse Kähler metric and of the cone metric. |
---|---|
ISSN: | 0046-5755 1572-9168 |
DOI: | 10.1007/s10711-024-00935-x |