Projectively induced Kähler cones over regular Sasakian manifolds

Motivated by a conjecture in Loi et al. (Math Zeit 290:599–613, 2018) we prove that the Kähler cone over a regular complete Sasakian manifold is Ricci-flat and projectively induced if and only if it is flat. We also obtain that, up to D a —homothetic transformations, Kähler cones over homogeneous co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geometriae dedicata 2024-08, Vol.218 (4), Article 85
Hauptverfasser: Marini, Stefano, Tardini, Nicoletta, Zedda, Michela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Motivated by a conjecture in Loi et al. (Math Zeit 290:599–613, 2018) we prove that the Kähler cone over a regular complete Sasakian manifold is Ricci-flat and projectively induced if and only if it is flat. We also obtain that, up to D a —homothetic transformations, Kähler cones over homogeneous compact Sasakian manifolds are projectively induced. As main tool we provide a relation between the Kähler potentials of the transverse Kähler metric and of the cone metric.
ISSN:0046-5755
1572-9168
DOI:10.1007/s10711-024-00935-x