Some Cases of the Erdős-Lovász Tihany Conjecture for Claw-free Graphs
The Erdős-Lovász Tihany Conjecture states that any \(G\) with chromatic number \(\chi(G) = s + t - 1 > \omega(G)\), with \(s,t \geq 2\) can be split into two vertex-disjoint subgraphs of chromatic number \(s, t\) respectively. We prove this conjecture for pairs \((s, t)\) if \(t \leq s + 2\), whe...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-07 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Erdős-Lovász Tihany Conjecture states that any \(G\) with chromatic number \(\chi(G) = s + t - 1 > \omega(G)\), with \(s,t \geq 2\) can be split into two vertex-disjoint subgraphs of chromatic number \(s, t\) respectively. We prove this conjecture for pairs \((s, t)\) if \(t \leq s + 2\), whenever \(G\) has a \(K_s\), and for pairs \((s, t)\) if \(t \leq 4 s - 3\), whenever \(G\) contains a \(K_s\) and is claw-free. We also prove the Erdős Lovász Tihany Conjecture for the pair \((3, 10)\) for claw-free graphs. |
---|---|
ISSN: | 2331-8422 |