Operators of the Cowen–Douglas class with strong flag structure
Let F B n ( Ω ) denote operators in the Cowen–Douglas class B n ( Ω ) possessing a flag structure. All the irreducible homogeneous operators in B n ( Ω ) belong to this class. The unitary invariants of this class of operators include the curvature and the second fundamental form of the corresponding...
Gespeichert in:
Veröffentlicht in: | Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas Físicas y Naturales. Serie A, Matemáticas, 2024-07, Vol.118 (3), Article 132 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
F
B
n
(
Ω
)
denote operators in the Cowen–Douglas class
B
n
(
Ω
)
possessing a flag structure. All the irreducible homogeneous operators in
B
n
(
Ω
)
belong to this class. The unitary invariants of this class of operators include the curvature and the second fundamental form of the corresponding line bundle. In this paper, we introduce a subclass of
F
B
n
(
Ω
)
which possesses a “strong" flag structure, and for which the curvature and the second fundamental form of the associated line bundle is a complete set of unitary invariants. We prove that this new class of operators is norm dense in
B
n
(
Ω
)
up to similarity. We obtain a classification modulo conjugation by an invertible operator for a large class of operators possessing a strong flag structure. Along the way, it is shown that the number of the similarity invariants found recently can be reduced from
n
(
n
-
1
)
2
+
1
to
n
. Moreover, we obtain a complete characterization of weakly homogeneous operators with large index and flag structure. |
---|---|
ISSN: | 1578-7303 1579-1505 |
DOI: | 10.1007/s13398-024-01630-y |