The Blue Multi Unit Spectroscopic Explorer (BlueMUSE) on the VLT: characterization of two VPHG prototypes based on dichromated gelatin and photopolymer recording materials

Volume-phase holographic gratings (VPHGs) are widely used in astronomical spectrographs due to their adaptability and high diffraction efficiency. Most VPHGs in operation use dichromated gelatin as a recording material, whose performance is sensitive to the coating and development process, especiall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-06
Hauptverfasser: Jeanneau, Alexandre, Bianco, Andrea, Clawson, Andrew, Frangiamore, Michele, Pearson, Elroy, Pinard, Laurent, Schmoll, Jürgen, Richard, Johan, Giroud, Rémi, Laurent, Florence, Bacon, Roland
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Volume-phase holographic gratings (VPHGs) are widely used in astronomical spectrographs due to their adaptability and high diffraction efficiency. Most VPHGs in operation use dichromated gelatin as a recording material, whose performance is sensitive to the coating and development process, especially in the near-UV. In this letter, we present the characterization of two UV-blue VPHG prototypes for the BlueMUSE integral field spectrograph on the VLT, based on dichromated gelatin and the Bayfol\(\circledR\)HX photopolymer film as recording materials. Our measurements show that both prototypes meet the required diffraction efficiency and exhibit similar performance with a wavelength-average exceeding 70% in the 350-580 nm range. Deviations from theoretical models increase towards 350 nm, consistently with previous studies on similar gratings. We also report similar performances in terms spatial uniformity and grating-to-grating consistency. Likewise, no significant differences in wavefront error or scattered light are observed between the prototypes.
ISSN:2331-8422