Orbit symmetry breaking in MXene implements enhanced soft bioelectronic implants

Bioelectronic implants with soft mechanics, biocompatibility, and excellent electrical performance enable biomedical implants to record electrophysiological signals and execute interventions within internal organs, promising to revolutionize the diagnosing, monitoring, and treatment of various patho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-06
Hauptverfasser: Wu, Yizhang, Li, Yuan, Liu, Yihan, Zhu, Dashuai, Xing, Sicheng, Lambert, Noah, Weisbecker, Hannah, Liu, Siyuan, Davis, Brayden, Zhang, Lin, Wang, Meixiang, Yuan, Gongkai, You, Chris Zhoufan, Zhang, Anran, Duncan, Cate, Xie, Wanrong, Wang, Yihang, Wang, Yong, Kanamurlapudi, Sreya, Garcia-Guzman, Evert, Putcha, Arjun, Dickey, Michael D, Huang, Ke, Bai, Wubin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Wu, Yizhang
Li, Yuan
Liu, Yihan
Zhu, Dashuai
Xing, Sicheng
Lambert, Noah
Weisbecker, Hannah
Liu, Siyuan
Davis, Brayden
Zhang, Lin
Wang, Meixiang
Yuan, Gongkai
You, Chris Zhoufan
Zhang, Anran
Duncan, Cate
Xie, Wanrong
Wang, Yihang
Wang, Yong
Kanamurlapudi, Sreya
Garcia-Guzman, Evert
Putcha, Arjun
Dickey, Michael D
Huang, Ke
Bai, Wubin
description Bioelectronic implants with soft mechanics, biocompatibility, and excellent electrical performance enable biomedical implants to record electrophysiological signals and execute interventions within internal organs, promising to revolutionize the diagnosing, monitoring, and treatment of various pathological conditions. However, challenges remain in improving excessive impedance at the bioelectronic-tissue interface and thus the efficacy of electrophysiological signaling and intervention. Here, we devise orbit symmetry breaking in MXene (a low-cost scalability, biocompatible, and conductive 2D layered material, that we refer to as OBXene), that exhibits low bioelectronic-tissue impedance, originating from the out-of-plane charge transfer. Furthermore, the Schottky-induced piezoelectricity stemming from the asymmetric orbital configuration of OBXene facilitates interlayered charge transport in the device. In this study, we report an OBXene-based cardiac patch applied on the left ventricular epicardium of both rodent and porcine models to enable spatiotemporal epicardium mapping and pacing, while coupling the wireless and battery-free operation for long-term real-time recording and closed-loop stimulation.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3070856484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3070856484</sourcerecordid><originalsourceid>FETCH-proquest_journals_30708564843</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtO1xwLsSkf7soLqKDg5uk9VZTm5uapEPf3iI-gNMZzjdjkZByk5SpEAsWe99yzkVeiCyTETufXKUD-NEYDG6EyqF6aXqAJjhekRC06Ts0SMED0lNRjXfwtglQaYsd1sFZ0vWXqQmt2LxRncf41yVb73eX7SHpnX0P6MOttYOjad0kL3iZ5WmZyv_UB8GSP8o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3070856484</pqid></control><display><type>article</type><title>Orbit symmetry breaking in MXene implements enhanced soft bioelectronic implants</title><source>Free E- Journals</source><creator>Wu, Yizhang ; Li, Yuan ; Liu, Yihan ; Zhu, Dashuai ; Xing, Sicheng ; Lambert, Noah ; Weisbecker, Hannah ; Liu, Siyuan ; Davis, Brayden ; Zhang, Lin ; Wang, Meixiang ; Yuan, Gongkai ; You, Chris Zhoufan ; Zhang, Anran ; Duncan, Cate ; Xie, Wanrong ; Wang, Yihang ; Wang, Yong ; Kanamurlapudi, Sreya ; Garcia-Guzman, Evert ; Putcha, Arjun ; Dickey, Michael D ; Huang, Ke ; Bai, Wubin</creator><creatorcontrib>Wu, Yizhang ; Li, Yuan ; Liu, Yihan ; Zhu, Dashuai ; Xing, Sicheng ; Lambert, Noah ; Weisbecker, Hannah ; Liu, Siyuan ; Davis, Brayden ; Zhang, Lin ; Wang, Meixiang ; Yuan, Gongkai ; You, Chris Zhoufan ; Zhang, Anran ; Duncan, Cate ; Xie, Wanrong ; Wang, Yihang ; Wang, Yong ; Kanamurlapudi, Sreya ; Garcia-Guzman, Evert ; Putcha, Arjun ; Dickey, Michael D ; Huang, Ke ; Bai, Wubin</creatorcontrib><description>Bioelectronic implants with soft mechanics, biocompatibility, and excellent electrical performance enable biomedical implants to record electrophysiological signals and execute interventions within internal organs, promising to revolutionize the diagnosing, monitoring, and treatment of various pathological conditions. However, challenges remain in improving excessive impedance at the bioelectronic-tissue interface and thus the efficacy of electrophysiological signaling and intervention. Here, we devise orbit symmetry breaking in MXene (a low-cost scalability, biocompatible, and conductive 2D layered material, that we refer to as OBXene), that exhibits low bioelectronic-tissue impedance, originating from the out-of-plane charge transfer. Furthermore, the Schottky-induced piezoelectricity stemming from the asymmetric orbital configuration of OBXene facilitates interlayered charge transport in the device. In this study, we report an OBXene-based cardiac patch applied on the left ventricular epicardium of both rodent and porcine models to enable spatiotemporal epicardium mapping and pacing, while coupling the wireless and battery-free operation for long-term real-time recording and closed-loop stimulation.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Biocompatibility ; Bioelectricity ; Broken symmetry ; Charge transport ; Closed loops ; Epicardium ; Impedance ; MXenes ; Piezoelectricity ; Real time ; Surgical implants</subject><ispartof>arXiv.org, 2024-06</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Wu, Yizhang</creatorcontrib><creatorcontrib>Li, Yuan</creatorcontrib><creatorcontrib>Liu, Yihan</creatorcontrib><creatorcontrib>Zhu, Dashuai</creatorcontrib><creatorcontrib>Xing, Sicheng</creatorcontrib><creatorcontrib>Lambert, Noah</creatorcontrib><creatorcontrib>Weisbecker, Hannah</creatorcontrib><creatorcontrib>Liu, Siyuan</creatorcontrib><creatorcontrib>Davis, Brayden</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Wang, Meixiang</creatorcontrib><creatorcontrib>Yuan, Gongkai</creatorcontrib><creatorcontrib>You, Chris Zhoufan</creatorcontrib><creatorcontrib>Zhang, Anran</creatorcontrib><creatorcontrib>Duncan, Cate</creatorcontrib><creatorcontrib>Xie, Wanrong</creatorcontrib><creatorcontrib>Wang, Yihang</creatorcontrib><creatorcontrib>Wang, Yong</creatorcontrib><creatorcontrib>Kanamurlapudi, Sreya</creatorcontrib><creatorcontrib>Garcia-Guzman, Evert</creatorcontrib><creatorcontrib>Putcha, Arjun</creatorcontrib><creatorcontrib>Dickey, Michael D</creatorcontrib><creatorcontrib>Huang, Ke</creatorcontrib><creatorcontrib>Bai, Wubin</creatorcontrib><title>Orbit symmetry breaking in MXene implements enhanced soft bioelectronic implants</title><title>arXiv.org</title><description>Bioelectronic implants with soft mechanics, biocompatibility, and excellent electrical performance enable biomedical implants to record electrophysiological signals and execute interventions within internal organs, promising to revolutionize the diagnosing, monitoring, and treatment of various pathological conditions. However, challenges remain in improving excessive impedance at the bioelectronic-tissue interface and thus the efficacy of electrophysiological signaling and intervention. Here, we devise orbit symmetry breaking in MXene (a low-cost scalability, biocompatible, and conductive 2D layered material, that we refer to as OBXene), that exhibits low bioelectronic-tissue impedance, originating from the out-of-plane charge transfer. Furthermore, the Schottky-induced piezoelectricity stemming from the asymmetric orbital configuration of OBXene facilitates interlayered charge transport in the device. In this study, we report an OBXene-based cardiac patch applied on the left ventricular epicardium of both rodent and porcine models to enable spatiotemporal epicardium mapping and pacing, while coupling the wireless and battery-free operation for long-term real-time recording and closed-loop stimulation.</description><subject>Biocompatibility</subject><subject>Bioelectricity</subject><subject>Broken symmetry</subject><subject>Charge transport</subject><subject>Closed loops</subject><subject>Epicardium</subject><subject>Impedance</subject><subject>MXenes</subject><subject>Piezoelectricity</subject><subject>Real time</subject><subject>Surgical implants</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtO1xwLsSkf7soLqKDg5uk9VZTm5uapEPf3iI-gNMZzjdjkZByk5SpEAsWe99yzkVeiCyTETufXKUD-NEYDG6EyqF6aXqAJjhekRC06Ts0SMED0lNRjXfwtglQaYsd1sFZ0vWXqQmt2LxRncf41yVb73eX7SHpnX0P6MOttYOjad0kL3iZ5WmZyv_UB8GSP8o</recordid><startdate>20240620</startdate><enddate>20240620</enddate><creator>Wu, Yizhang</creator><creator>Li, Yuan</creator><creator>Liu, Yihan</creator><creator>Zhu, Dashuai</creator><creator>Xing, Sicheng</creator><creator>Lambert, Noah</creator><creator>Weisbecker, Hannah</creator><creator>Liu, Siyuan</creator><creator>Davis, Brayden</creator><creator>Zhang, Lin</creator><creator>Wang, Meixiang</creator><creator>Yuan, Gongkai</creator><creator>You, Chris Zhoufan</creator><creator>Zhang, Anran</creator><creator>Duncan, Cate</creator><creator>Xie, Wanrong</creator><creator>Wang, Yihang</creator><creator>Wang, Yong</creator><creator>Kanamurlapudi, Sreya</creator><creator>Garcia-Guzman, Evert</creator><creator>Putcha, Arjun</creator><creator>Dickey, Michael D</creator><creator>Huang, Ke</creator><creator>Bai, Wubin</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240620</creationdate><title>Orbit symmetry breaking in MXene implements enhanced soft bioelectronic implants</title><author>Wu, Yizhang ; Li, Yuan ; Liu, Yihan ; Zhu, Dashuai ; Xing, Sicheng ; Lambert, Noah ; Weisbecker, Hannah ; Liu, Siyuan ; Davis, Brayden ; Zhang, Lin ; Wang, Meixiang ; Yuan, Gongkai ; You, Chris Zhoufan ; Zhang, Anran ; Duncan, Cate ; Xie, Wanrong ; Wang, Yihang ; Wang, Yong ; Kanamurlapudi, Sreya ; Garcia-Guzman, Evert ; Putcha, Arjun ; Dickey, Michael D ; Huang, Ke ; Bai, Wubin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30708564843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biocompatibility</topic><topic>Bioelectricity</topic><topic>Broken symmetry</topic><topic>Charge transport</topic><topic>Closed loops</topic><topic>Epicardium</topic><topic>Impedance</topic><topic>MXenes</topic><topic>Piezoelectricity</topic><topic>Real time</topic><topic>Surgical implants</topic><toplevel>online_resources</toplevel><creatorcontrib>Wu, Yizhang</creatorcontrib><creatorcontrib>Li, Yuan</creatorcontrib><creatorcontrib>Liu, Yihan</creatorcontrib><creatorcontrib>Zhu, Dashuai</creatorcontrib><creatorcontrib>Xing, Sicheng</creatorcontrib><creatorcontrib>Lambert, Noah</creatorcontrib><creatorcontrib>Weisbecker, Hannah</creatorcontrib><creatorcontrib>Liu, Siyuan</creatorcontrib><creatorcontrib>Davis, Brayden</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Wang, Meixiang</creatorcontrib><creatorcontrib>Yuan, Gongkai</creatorcontrib><creatorcontrib>You, Chris Zhoufan</creatorcontrib><creatorcontrib>Zhang, Anran</creatorcontrib><creatorcontrib>Duncan, Cate</creatorcontrib><creatorcontrib>Xie, Wanrong</creatorcontrib><creatorcontrib>Wang, Yihang</creatorcontrib><creatorcontrib>Wang, Yong</creatorcontrib><creatorcontrib>Kanamurlapudi, Sreya</creatorcontrib><creatorcontrib>Garcia-Guzman, Evert</creatorcontrib><creatorcontrib>Putcha, Arjun</creatorcontrib><creatorcontrib>Dickey, Michael D</creatorcontrib><creatorcontrib>Huang, Ke</creatorcontrib><creatorcontrib>Bai, Wubin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Yizhang</au><au>Li, Yuan</au><au>Liu, Yihan</au><au>Zhu, Dashuai</au><au>Xing, Sicheng</au><au>Lambert, Noah</au><au>Weisbecker, Hannah</au><au>Liu, Siyuan</au><au>Davis, Brayden</au><au>Zhang, Lin</au><au>Wang, Meixiang</au><au>Yuan, Gongkai</au><au>You, Chris Zhoufan</au><au>Zhang, Anran</au><au>Duncan, Cate</au><au>Xie, Wanrong</au><au>Wang, Yihang</au><au>Wang, Yong</au><au>Kanamurlapudi, Sreya</au><au>Garcia-Guzman, Evert</au><au>Putcha, Arjun</au><au>Dickey, Michael D</au><au>Huang, Ke</au><au>Bai, Wubin</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Orbit symmetry breaking in MXene implements enhanced soft bioelectronic implants</atitle><jtitle>arXiv.org</jtitle><date>2024-06-20</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Bioelectronic implants with soft mechanics, biocompatibility, and excellent electrical performance enable biomedical implants to record electrophysiological signals and execute interventions within internal organs, promising to revolutionize the diagnosing, monitoring, and treatment of various pathological conditions. However, challenges remain in improving excessive impedance at the bioelectronic-tissue interface and thus the efficacy of electrophysiological signaling and intervention. Here, we devise orbit symmetry breaking in MXene (a low-cost scalability, biocompatible, and conductive 2D layered material, that we refer to as OBXene), that exhibits low bioelectronic-tissue impedance, originating from the out-of-plane charge transfer. Furthermore, the Schottky-induced piezoelectricity stemming from the asymmetric orbital configuration of OBXene facilitates interlayered charge transport in the device. In this study, we report an OBXene-based cardiac patch applied on the left ventricular epicardium of both rodent and porcine models to enable spatiotemporal epicardium mapping and pacing, while coupling the wireless and battery-free operation for long-term real-time recording and closed-loop stimulation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_3070856484
source Free E- Journals
subjects Biocompatibility
Bioelectricity
Broken symmetry
Charge transport
Closed loops
Epicardium
Impedance
MXenes
Piezoelectricity
Real time
Surgical implants
title Orbit symmetry breaking in MXene implements enhanced soft bioelectronic implants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T14%3A18%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Orbit%20symmetry%20breaking%20in%20MXene%20implements%20enhanced%20soft%20bioelectronic%20implants&rft.jtitle=arXiv.org&rft.au=Wu,%20Yizhang&rft.date=2024-06-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3070856484%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3070856484&rft_id=info:pmid/&rfr_iscdi=true