Orbit symmetry breaking in MXene implements enhanced soft bioelectronic implants
Bioelectronic implants with soft mechanics, biocompatibility, and excellent electrical performance enable biomedical implants to record electrophysiological signals and execute interventions within internal organs, promising to revolutionize the diagnosing, monitoring, and treatment of various patho...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-06 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Wu, Yizhang Li, Yuan Liu, Yihan Zhu, Dashuai Xing, Sicheng Lambert, Noah Weisbecker, Hannah Liu, Siyuan Davis, Brayden Zhang, Lin Wang, Meixiang Yuan, Gongkai You, Chris Zhoufan Zhang, Anran Duncan, Cate Xie, Wanrong Wang, Yihang Wang, Yong Kanamurlapudi, Sreya Garcia-Guzman, Evert Putcha, Arjun Dickey, Michael D Huang, Ke Bai, Wubin |
description | Bioelectronic implants with soft mechanics, biocompatibility, and excellent electrical performance enable biomedical implants to record electrophysiological signals and execute interventions within internal organs, promising to revolutionize the diagnosing, monitoring, and treatment of various pathological conditions. However, challenges remain in improving excessive impedance at the bioelectronic-tissue interface and thus the efficacy of electrophysiological signaling and intervention. Here, we devise orbit symmetry breaking in MXene (a low-cost scalability, biocompatible, and conductive 2D layered material, that we refer to as OBXene), that exhibits low bioelectronic-tissue impedance, originating from the out-of-plane charge transfer. Furthermore, the Schottky-induced piezoelectricity stemming from the asymmetric orbital configuration of OBXene facilitates interlayered charge transport in the device. In this study, we report an OBXene-based cardiac patch applied on the left ventricular epicardium of both rodent and porcine models to enable spatiotemporal epicardium mapping and pacing, while coupling the wireless and battery-free operation for long-term real-time recording and closed-loop stimulation. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3070856484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3070856484</sourcerecordid><originalsourceid>FETCH-proquest_journals_30708564843</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtO1xwLsSkf7soLqKDg5uk9VZTm5uapEPf3iI-gNMZzjdjkZByk5SpEAsWe99yzkVeiCyTETufXKUD-NEYDG6EyqF6aXqAJjhekRC06Ts0SMED0lNRjXfwtglQaYsd1sFZ0vWXqQmt2LxRncf41yVb73eX7SHpnX0P6MOttYOjad0kL3iZ5WmZyv_UB8GSP8o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3070856484</pqid></control><display><type>article</type><title>Orbit symmetry breaking in MXene implements enhanced soft bioelectronic implants</title><source>Free E- Journals</source><creator>Wu, Yizhang ; Li, Yuan ; Liu, Yihan ; Zhu, Dashuai ; Xing, Sicheng ; Lambert, Noah ; Weisbecker, Hannah ; Liu, Siyuan ; Davis, Brayden ; Zhang, Lin ; Wang, Meixiang ; Yuan, Gongkai ; You, Chris Zhoufan ; Zhang, Anran ; Duncan, Cate ; Xie, Wanrong ; Wang, Yihang ; Wang, Yong ; Kanamurlapudi, Sreya ; Garcia-Guzman, Evert ; Putcha, Arjun ; Dickey, Michael D ; Huang, Ke ; Bai, Wubin</creator><creatorcontrib>Wu, Yizhang ; Li, Yuan ; Liu, Yihan ; Zhu, Dashuai ; Xing, Sicheng ; Lambert, Noah ; Weisbecker, Hannah ; Liu, Siyuan ; Davis, Brayden ; Zhang, Lin ; Wang, Meixiang ; Yuan, Gongkai ; You, Chris Zhoufan ; Zhang, Anran ; Duncan, Cate ; Xie, Wanrong ; Wang, Yihang ; Wang, Yong ; Kanamurlapudi, Sreya ; Garcia-Guzman, Evert ; Putcha, Arjun ; Dickey, Michael D ; Huang, Ke ; Bai, Wubin</creatorcontrib><description>Bioelectronic implants with soft mechanics, biocompatibility, and excellent electrical performance enable biomedical implants to record electrophysiological signals and execute interventions within internal organs, promising to revolutionize the diagnosing, monitoring, and treatment of various pathological conditions. However, challenges remain in improving excessive impedance at the bioelectronic-tissue interface and thus the efficacy of electrophysiological signaling and intervention. Here, we devise orbit symmetry breaking in MXene (a low-cost scalability, biocompatible, and conductive 2D layered material, that we refer to as OBXene), that exhibits low bioelectronic-tissue impedance, originating from the out-of-plane charge transfer. Furthermore, the Schottky-induced piezoelectricity stemming from the asymmetric orbital configuration of OBXene facilitates interlayered charge transport in the device. In this study, we report an OBXene-based cardiac patch applied on the left ventricular epicardium of both rodent and porcine models to enable spatiotemporal epicardium mapping and pacing, while coupling the wireless and battery-free operation for long-term real-time recording and closed-loop stimulation.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Biocompatibility ; Bioelectricity ; Broken symmetry ; Charge transport ; Closed loops ; Epicardium ; Impedance ; MXenes ; Piezoelectricity ; Real time ; Surgical implants</subject><ispartof>arXiv.org, 2024-06</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Wu, Yizhang</creatorcontrib><creatorcontrib>Li, Yuan</creatorcontrib><creatorcontrib>Liu, Yihan</creatorcontrib><creatorcontrib>Zhu, Dashuai</creatorcontrib><creatorcontrib>Xing, Sicheng</creatorcontrib><creatorcontrib>Lambert, Noah</creatorcontrib><creatorcontrib>Weisbecker, Hannah</creatorcontrib><creatorcontrib>Liu, Siyuan</creatorcontrib><creatorcontrib>Davis, Brayden</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Wang, Meixiang</creatorcontrib><creatorcontrib>Yuan, Gongkai</creatorcontrib><creatorcontrib>You, Chris Zhoufan</creatorcontrib><creatorcontrib>Zhang, Anran</creatorcontrib><creatorcontrib>Duncan, Cate</creatorcontrib><creatorcontrib>Xie, Wanrong</creatorcontrib><creatorcontrib>Wang, Yihang</creatorcontrib><creatorcontrib>Wang, Yong</creatorcontrib><creatorcontrib>Kanamurlapudi, Sreya</creatorcontrib><creatorcontrib>Garcia-Guzman, Evert</creatorcontrib><creatorcontrib>Putcha, Arjun</creatorcontrib><creatorcontrib>Dickey, Michael D</creatorcontrib><creatorcontrib>Huang, Ke</creatorcontrib><creatorcontrib>Bai, Wubin</creatorcontrib><title>Orbit symmetry breaking in MXene implements enhanced soft bioelectronic implants</title><title>arXiv.org</title><description>Bioelectronic implants with soft mechanics, biocompatibility, and excellent electrical performance enable biomedical implants to record electrophysiological signals and execute interventions within internal organs, promising to revolutionize the diagnosing, monitoring, and treatment of various pathological conditions. However, challenges remain in improving excessive impedance at the bioelectronic-tissue interface and thus the efficacy of electrophysiological signaling and intervention. Here, we devise orbit symmetry breaking in MXene (a low-cost scalability, biocompatible, and conductive 2D layered material, that we refer to as OBXene), that exhibits low bioelectronic-tissue impedance, originating from the out-of-plane charge transfer. Furthermore, the Schottky-induced piezoelectricity stemming from the asymmetric orbital configuration of OBXene facilitates interlayered charge transport in the device. In this study, we report an OBXene-based cardiac patch applied on the left ventricular epicardium of both rodent and porcine models to enable spatiotemporal epicardium mapping and pacing, while coupling the wireless and battery-free operation for long-term real-time recording and closed-loop stimulation.</description><subject>Biocompatibility</subject><subject>Bioelectricity</subject><subject>Broken symmetry</subject><subject>Charge transport</subject><subject>Closed loops</subject><subject>Epicardium</subject><subject>Impedance</subject><subject>MXenes</subject><subject>Piezoelectricity</subject><subject>Real time</subject><subject>Surgical implants</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtO1xwLsSkf7soLqKDg5uk9VZTm5uapEPf3iI-gNMZzjdjkZByk5SpEAsWe99yzkVeiCyTETufXKUD-NEYDG6EyqF6aXqAJjhekRC06Ts0SMED0lNRjXfwtglQaYsd1sFZ0vWXqQmt2LxRncf41yVb73eX7SHpnX0P6MOttYOjad0kL3iZ5WmZyv_UB8GSP8o</recordid><startdate>20240620</startdate><enddate>20240620</enddate><creator>Wu, Yizhang</creator><creator>Li, Yuan</creator><creator>Liu, Yihan</creator><creator>Zhu, Dashuai</creator><creator>Xing, Sicheng</creator><creator>Lambert, Noah</creator><creator>Weisbecker, Hannah</creator><creator>Liu, Siyuan</creator><creator>Davis, Brayden</creator><creator>Zhang, Lin</creator><creator>Wang, Meixiang</creator><creator>Yuan, Gongkai</creator><creator>You, Chris Zhoufan</creator><creator>Zhang, Anran</creator><creator>Duncan, Cate</creator><creator>Xie, Wanrong</creator><creator>Wang, Yihang</creator><creator>Wang, Yong</creator><creator>Kanamurlapudi, Sreya</creator><creator>Garcia-Guzman, Evert</creator><creator>Putcha, Arjun</creator><creator>Dickey, Michael D</creator><creator>Huang, Ke</creator><creator>Bai, Wubin</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240620</creationdate><title>Orbit symmetry breaking in MXene implements enhanced soft bioelectronic implants</title><author>Wu, Yizhang ; Li, Yuan ; Liu, Yihan ; Zhu, Dashuai ; Xing, Sicheng ; Lambert, Noah ; Weisbecker, Hannah ; Liu, Siyuan ; Davis, Brayden ; Zhang, Lin ; Wang, Meixiang ; Yuan, Gongkai ; You, Chris Zhoufan ; Zhang, Anran ; Duncan, Cate ; Xie, Wanrong ; Wang, Yihang ; Wang, Yong ; Kanamurlapudi, Sreya ; Garcia-Guzman, Evert ; Putcha, Arjun ; Dickey, Michael D ; Huang, Ke ; Bai, Wubin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30708564843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biocompatibility</topic><topic>Bioelectricity</topic><topic>Broken symmetry</topic><topic>Charge transport</topic><topic>Closed loops</topic><topic>Epicardium</topic><topic>Impedance</topic><topic>MXenes</topic><topic>Piezoelectricity</topic><topic>Real time</topic><topic>Surgical implants</topic><toplevel>online_resources</toplevel><creatorcontrib>Wu, Yizhang</creatorcontrib><creatorcontrib>Li, Yuan</creatorcontrib><creatorcontrib>Liu, Yihan</creatorcontrib><creatorcontrib>Zhu, Dashuai</creatorcontrib><creatorcontrib>Xing, Sicheng</creatorcontrib><creatorcontrib>Lambert, Noah</creatorcontrib><creatorcontrib>Weisbecker, Hannah</creatorcontrib><creatorcontrib>Liu, Siyuan</creatorcontrib><creatorcontrib>Davis, Brayden</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Wang, Meixiang</creatorcontrib><creatorcontrib>Yuan, Gongkai</creatorcontrib><creatorcontrib>You, Chris Zhoufan</creatorcontrib><creatorcontrib>Zhang, Anran</creatorcontrib><creatorcontrib>Duncan, Cate</creatorcontrib><creatorcontrib>Xie, Wanrong</creatorcontrib><creatorcontrib>Wang, Yihang</creatorcontrib><creatorcontrib>Wang, Yong</creatorcontrib><creatorcontrib>Kanamurlapudi, Sreya</creatorcontrib><creatorcontrib>Garcia-Guzman, Evert</creatorcontrib><creatorcontrib>Putcha, Arjun</creatorcontrib><creatorcontrib>Dickey, Michael D</creatorcontrib><creatorcontrib>Huang, Ke</creatorcontrib><creatorcontrib>Bai, Wubin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Yizhang</au><au>Li, Yuan</au><au>Liu, Yihan</au><au>Zhu, Dashuai</au><au>Xing, Sicheng</au><au>Lambert, Noah</au><au>Weisbecker, Hannah</au><au>Liu, Siyuan</au><au>Davis, Brayden</au><au>Zhang, Lin</au><au>Wang, Meixiang</au><au>Yuan, Gongkai</au><au>You, Chris Zhoufan</au><au>Zhang, Anran</au><au>Duncan, Cate</au><au>Xie, Wanrong</au><au>Wang, Yihang</au><au>Wang, Yong</au><au>Kanamurlapudi, Sreya</au><au>Garcia-Guzman, Evert</au><au>Putcha, Arjun</au><au>Dickey, Michael D</au><au>Huang, Ke</au><au>Bai, Wubin</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Orbit symmetry breaking in MXene implements enhanced soft bioelectronic implants</atitle><jtitle>arXiv.org</jtitle><date>2024-06-20</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Bioelectronic implants with soft mechanics, biocompatibility, and excellent electrical performance enable biomedical implants to record electrophysiological signals and execute interventions within internal organs, promising to revolutionize the diagnosing, monitoring, and treatment of various pathological conditions. However, challenges remain in improving excessive impedance at the bioelectronic-tissue interface and thus the efficacy of electrophysiological signaling and intervention. Here, we devise orbit symmetry breaking in MXene (a low-cost scalability, biocompatible, and conductive 2D layered material, that we refer to as OBXene), that exhibits low bioelectronic-tissue impedance, originating from the out-of-plane charge transfer. Furthermore, the Schottky-induced piezoelectricity stemming from the asymmetric orbital configuration of OBXene facilitates interlayered charge transport in the device. In this study, we report an OBXene-based cardiac patch applied on the left ventricular epicardium of both rodent and porcine models to enable spatiotemporal epicardium mapping and pacing, while coupling the wireless and battery-free operation for long-term real-time recording and closed-loop stimulation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3070856484 |
source | Free E- Journals |
subjects | Biocompatibility Bioelectricity Broken symmetry Charge transport Closed loops Epicardium Impedance MXenes Piezoelectricity Real time Surgical implants |
title | Orbit symmetry breaking in MXene implements enhanced soft bioelectronic implants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T14%3A18%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Orbit%20symmetry%20breaking%20in%20MXene%20implements%20enhanced%20soft%20bioelectronic%20implants&rft.jtitle=arXiv.org&rft.au=Wu,%20Yizhang&rft.date=2024-06-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3070856484%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3070856484&rft_id=info:pmid/&rfr_iscdi=true |