Orbit symmetry breaking in MXene implements enhanced soft bioelectronic implants

Bioelectronic implants with soft mechanics, biocompatibility, and excellent electrical performance enable biomedical implants to record electrophysiological signals and execute interventions within internal organs, promising to revolutionize the diagnosing, monitoring, and treatment of various patho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-06
Hauptverfasser: Wu, Yizhang, Li, Yuan, Liu, Yihan, Zhu, Dashuai, Xing, Sicheng, Lambert, Noah, Weisbecker, Hannah, Liu, Siyuan, Davis, Brayden, Zhang, Lin, Wang, Meixiang, Yuan, Gongkai, You, Chris Zhoufan, Zhang, Anran, Duncan, Cate, Xie, Wanrong, Wang, Yihang, Wang, Yong, Kanamurlapudi, Sreya, Garcia-Guzman, Evert, Putcha, Arjun, Dickey, Michael D, Huang, Ke, Bai, Wubin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bioelectronic implants with soft mechanics, biocompatibility, and excellent electrical performance enable biomedical implants to record electrophysiological signals and execute interventions within internal organs, promising to revolutionize the diagnosing, monitoring, and treatment of various pathological conditions. However, challenges remain in improving excessive impedance at the bioelectronic-tissue interface and thus the efficacy of electrophysiological signaling and intervention. Here, we devise orbit symmetry breaking in MXene (a low-cost scalability, biocompatible, and conductive 2D layered material, that we refer to as OBXene), that exhibits low bioelectronic-tissue impedance, originating from the out-of-plane charge transfer. Furthermore, the Schottky-induced piezoelectricity stemming from the asymmetric orbital configuration of OBXene facilitates interlayered charge transport in the device. In this study, we report an OBXene-based cardiac patch applied on the left ventricular epicardium of both rodent and porcine models to enable spatiotemporal epicardium mapping and pacing, while coupling the wireless and battery-free operation for long-term real-time recording and closed-loop stimulation.
ISSN:2331-8422