Progress, Load Study, and Structural Analysis of the CFETR Divertor Dome

China Fusion Engineering Test Reactor (CFETR) is an experimental device of magnetic confinement tokamak fusion reactor that is being designed and developed in China, and the divertor is its important plasma-facing components (PFCs). The basic function of the divertor is to remove heat and impurities...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on plasma science 2024-04, Vol.52 (4), p.1460-1473
Hauptverfasser: Zhang, Xiyang, Wang, Yan, Zhong, Chongfeng, Yin, Lei, Zi, Pengfei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:China Fusion Engineering Test Reactor (CFETR) is an experimental device of magnetic confinement tokamak fusion reactor that is being designed and developed in China, and the divertor is its important plasma-facing components (PFCs). The basic function of the divertor is to remove heat and impurities. For the CFETR that carries out research on high fusion power, the design of the divertor faces greater challenges: higher requirements for heat removal capacity, higher mechanical properties, requirements for low activation under strong neutron flux radiation, requirements for remote handling (RH) maintenance and lightweight, and a new type of the divertor that can improve the tritium breeding ratio (TBR) of the device. Therefore, the CFETR proposes a divertor-blanket hybrid integrated structure. The divertor eliminates the Cassette support and adopts a separate design. The lower space is occupied by the breeding blanket, and each target is connected with the breeding blanket, respectively. Dome is an essential component of the divertor. In the previous work, the structural design of the Dome is completed using low-activation materials. In order to improve the mechanical properties of Dome, this article has made improvements to the interior of the plasma-facing unit (PFU) and completed thermal-hydraulic analysis to meet the requirement of accommodating steady-state peak heat flux of 10 MW/ \text{m}^{2} and nuclear heat in the condition of 1.5-GW fusion power. According to the operation parameters of the CFETR, the load of the Dome is studied. According to the above load study, the simulated working conditions of the Dome are summarized and structural analysis is completed. Structural analysis shows that the mechanical properties of the Dome meet the requirements, effectively promoting the processing and manufacturing of the Dome prototype.
ISSN:0093-3813
1939-9375
DOI:10.1109/TPS.2024.3382568