Solving Nonlinear Wave Equations Based on Barycentric Lagrange Interpolation

In this paper, we deeply study the high-precision barycentric Lagrange interpolation collocation method to solve nonlinear wave equations. Firstly, we introduce the barycentric Lagrange interpolation and provide the differential matrix. Secondly, we construct a direct linearization iteration scheme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nonlinear mathematical physics 2024-06, Vol.31 (1), p.41, Article 41
Hauptverfasser: Yuan, Hongwang, Wang, Xiyin, Li, Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we deeply study the high-precision barycentric Lagrange interpolation collocation method to solve nonlinear wave equations. Firstly, we introduce the barycentric Lagrange interpolation and provide the differential matrix. Secondly, we construct a direct linearization iteration scheme to solve nonlinear wave equations. Once again, we use the barycentric Lagrange interpolation to approximate the (2+1) dimensional nonlinear wave equations and (3+1) dimensional nonlinear wave equations, and describe the matrix format for direct linearization iteration of the nonlinear wave equations. Finally, the comparative experiments show that the barycentric Lagrange interpolation collocation method for solving nonlinear wave equations have higher calculation accuracy and convergence rate.
ISSN:1776-0852
1402-9251
1776-0852
DOI:10.1007/s44198-024-00200-5