Shared Information for a Markov Chain on a Tree

Shared information is a measure of mutual dependence among multiple jointly distributed random variables with finite alphabets. For a Markov chain on a tree with a given joint distribution, we give a new proof of an explicit characterization of shared information. The Markov chain on a tree is shown...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2024-07, Vol.70 (7), p.4655-4666
Hauptverfasser: Bhattacharya, Sagnik, Narayan, Prakash
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Shared information is a measure of mutual dependence among multiple jointly distributed random variables with finite alphabets. For a Markov chain on a tree with a given joint distribution, we give a new proof of an explicit characterization of shared information. The Markov chain on a tree is shown to possess a global Markov property based on graph separation; this property plays a key role in our proofs. When the underlying joint distribution is not known, we exploit the special form of this characterization to provide a multiarmed bandit algorithm for estimating shared information, and analyze its error performance.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2024.3353769