Humidity Stable Thermoelectric Hybrid Materials Toward a Self‐Powered Triple Sensing System

Highly sensitive and humidity‐resistive detection of the most common physical stimuli is of primary importance for practical application in real‐time monitoring. Here, a simple yet effective strategy is reported to achieve a highly humidity‐stable hybrid composite that enables simultaneous and accur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-06, Vol.34 (25), p.n/a
Hauptverfasser: Tu, Suo, Tian, Ting, Xiao, Tianxiao, Yao, Xiangtong, Shen, Sicong, Wu, Yansong, Liu, Yinlong, Bing, Zhenshan, Huang, Kai, Knoll, Alois, Yin, Shanshan, Liang, Suzhe, Heger, Julian E., Pan, Guangjiu, Schwartzkopf, Matthias, Roth, Stephan V., Müller‐Buschbaum, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Highly sensitive and humidity‐resistive detection of the most common physical stimuli is of primary importance for practical application in real‐time monitoring. Here, a simple yet effective strategy is reported to achieve a highly humidity‐stable hybrid composite that enables simultaneous and accurate pressure and temperature sensing in a single sensor. The improved electronic performance is due to the enhanced planarity of poly (3,‐4ethylenedioxythiophene) (PEDOT) and charge transfer between PEDOT:polystyrene sulfonate (PEDOT:PSS) and multi‐walled carbon nanotubes (CNTs) by strong π–π interaction. The preferred electronic pathway induced by a robust morphology in the hybrid composite is responsible for the high humidity stability. This study also demonstrates that the sensor has tremendous potential for intelligent object identification with a high level of 97.78% accuracy. Together with the position‐detection capability of a triboelectric nanogenerator (TENG), advantages for potential industrial applications of the triple sensing system in terms of intelligent classification without seeing are foreseen. Highly sensitive and humidity‐resistive detection of the most common physical stimuli is of primary importance for practical application in real‐time monitoring. Here, a simple yet effective strategy is reported to achieve a highly humidity‐stable hybrid composite that enables simultaneous and accurate pressure and temperature sensing in a single sensor.
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.202316088