The necessity of (co)unit in nearly Frobenius algebra
In this article, we concern the concept of nearly Frobenius algebra, which corresponds to most 2D-TQFT of which each cobordism admits no critical points of index 0 or 2. We prove that any nearly Frobenius algebra over a principal ideal domain with surjective multiplication and injective comultiplica...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-06 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we concern the concept of nearly Frobenius algebra, which corresponds to most 2D-TQFT of which each cobordism admits no critical points of index 0 or 2. We prove that any nearly Frobenius algebra over a principal ideal domain with surjective multiplication and injective comultiplication is indeed a Frobenius algebra. The motivation of this study mainly emanates from the investigation of potential constructions of link homology. |
---|---|
ISSN: | 2331-8422 |