The necessity of (co)unit in nearly Frobenius algebra

In this article, we concern the concept of nearly Frobenius algebra, which corresponds to most 2D-TQFT of which each cobordism admits no critical points of index 0 or 2. We prove that any nearly Frobenius algebra over a principal ideal domain with surjective multiplication and injective comultiplica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-06
Hauptverfasser: Cheng, Zhiyun, Ziyi Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we concern the concept of nearly Frobenius algebra, which corresponds to most 2D-TQFT of which each cobordism admits no critical points of index 0 or 2. We prove that any nearly Frobenius algebra over a principal ideal domain with surjective multiplication and injective comultiplication is indeed a Frobenius algebra. The motivation of this study mainly emanates from the investigation of potential constructions of link homology.
ISSN:2331-8422