A Comprehensive Survey of Foundation Models in Medicine

Foundation models (FMs) are large-scale deep-learning models trained on extensive datasets using self-supervised techniques. These models serve as a base for various downstream tasks, including healthcare. FMs have been adopted with great success across various domains within healthcare, including n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-06
Hauptverfasser: Khan, Wasif, Leem, Seowung, See, Kyle B, Wong, Joshua K, Zhang, Shaoting, Fang, Ruogu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Foundation models (FMs) are large-scale deep-learning models trained on extensive datasets using self-supervised techniques. These models serve as a base for various downstream tasks, including healthcare. FMs have been adopted with great success across various domains within healthcare, including natural language processing (NLP), computer vision, graph learning, biology, and omics. Existing healthcare-based surveys have not yet included all of these domains. Therefore, this survey provides a comprehensive overview of FMs in healthcare. We focus on the history, learning strategies, flagship models, applications, and challenges of FMs. We explore how FMs such as the BERT and GPT families are reshaping various healthcare domains, including clinical large language models, medical image analysis, and omics data. Furthermore, we provide a detailed taxonomy of healthcare applications facilitated by FMs, such as clinical NLP, medical computer vision, graph learning, and other biology-related tasks. Despite the promising opportunities FMs provide, they also have several associated challenges, which are explained in detail. We also outline potential future directions to provide researchers and practitioners with insights into the potential and limitations of FMs in healthcare to advance their deployment and mitigate associated risks.
ISSN:2331-8422