Towards Lifelong Dialogue Agents via Relation-aware Memory Construction and Timeline-augmented Response Generation

To achieve lifelong human-agent interaction, dialogue agents need to constantly memorize perceived information and properly retrieve it for response generation (RG). While prior work focuses on getting rid of outdated memories to improve retrieval quality, we argue that such memories provide rich, i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-10
Hauptverfasser: Ong, Kai Tzu-iunn, Kim, Namyoung, Gwak, Minju, Chae, Hyungjoo, Kwon, Taeyoon, Jo, Yohan, Seung-won Hwang, Lee, Dongha, Yeo, Jinyoung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To achieve lifelong human-agent interaction, dialogue agents need to constantly memorize perceived information and properly retrieve it for response generation (RG). While prior work focuses on getting rid of outdated memories to improve retrieval quality, we argue that such memories provide rich, important contextual cues for RG (e.g., changes in user behaviors) in long-term conversations. We present Theanine, a framework for LLM-based lifelong dialogue agents. Theanine discards memory removal and manages large-scale memories by linking them based on their temporal and cause-effect relation. Enabled by this linking structure, Theanine augments RG with memory timelines - series of memories representing the evolution or causality of relevant past events. Along with Theanine, we introduce TeaFarm, a counterfactual-driven evaluation scheme, addressing the limitation of G-Eval and human efforts in measuring memory-augmented dialogue agents. A supplementary video for Theanine and data for TeaFarm are at https://huggingface.co/spaces/ResearcherScholar/Theanine.
ISSN:2331-8422