More on Landau's theorem and Conjugacy Classes
Let \(p\) be a prime. We construct a function \(f\) on the natural numbers such that \(f(x) \to \infty\) as \(x \to \infty\) and \(k_{p}(G)+k_{p'}(G)\geq f(|G|)\) for all finite groups \(G\). Here \(k_{p}(G)\) denotes the number of conjugacy classes of nontrivial \(p\)-elements in \(G\) and \(k...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-06 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let \(p\) be a prime. We construct a function \(f\) on the natural numbers such that \(f(x) \to \infty\) as \(x \to \infty\) and \(k_{p}(G)+k_{p'}(G)\geq f(|G|)\) for all finite groups \(G\). Here \(k_{p}(G)\) denotes the number of conjugacy classes of nontrivial \(p\)-elements in \(G\) and \(k_{p'}(G)\) denotes the number of conjugacy classes of elements of \(G\) whose orders are coprime to \(p\). This is a variation of an old theorem of Landau and is used to prove the following: There exists a number \(c\) such that whenever \(p\) is a prime and \(G\) is a finite group of order divisible by \(p\) with \(|G|>c\), there exists a factorization \(p-1 = ab\) with \(a\) and \(b\) positive integers such that \(k_{p}(G) \geq a\) and \(k_{p'}(G) \geq b\) with equalities in both cases if and only if \(G=C_p \rtimes C_b\) with \(C_G(C_p) = C_p\). |
---|---|
ISSN: | 2331-8422 |