Approximate solutions to the nonlinear hyperbolic population balance equation: convergence, error estimate and numerical simulations
We consider a nonlinear, hyperbolic population balance equation that incorporates both aggregation and collisional breakage events simultaneously. Our approach revolves around the development of a novel time-explicit finite volume scheme. Under a suitable time-step stability condition, we prove the...
Gespeichert in:
Veröffentlicht in: | Zeitschrift für angewandte Mathematik und Physik 2024-08, Vol.75 (4), Article 125 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Zeitschrift für angewandte Mathematik und Physik |
container_volume | 75 |
creator | Das, Arijit Saha, Jitraj |
description | We consider a nonlinear, hyperbolic population balance equation that incorporates both aggregation and collisional breakage events simultaneously. Our approach revolves around the development of a novel time-explicit finite volume scheme. Under a suitable time-step stability condition, we prove the convergence of the approximate solution for any non-uniform mesh. A first-order convergence is obtained by a thorough error analysis of the proposed scheme for a suitable choice of kernels. Finally, we compute some numerical test examples to explore the behavior of the solution in steady-state conditions as well as the occurrence of gelation phenomena. |
doi_str_mv | 10.1007/s00033-024-02264-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3068587265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3068587265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-52b939ab7a02c6eb3a9a6d714ade8f08e42b09e8aa0fb286a3bfee407cea46803</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFb_gKcFr0Ynu5svb6X4BQUvel4m6aRNSXfT3UTs3R_uthG8eRgGhud9Z-Zl7DqGuxggu_cAIGUEQoUSqYriEzaJlYCoAFmcsgmAUpEQWXLOLrzfBDyLQU7Y96zrnP1qttgT97Yd-sYaz3vL-zVxY03bGELH1_uOXGnbpuKd7YYWDxwvsUVTEafdcBw88MqaT3IrCtNbTs5Zx8n3oz2aJTfDllxTYct9s_218ZfsrMbW09Vvn7KPp8f3-Uu0eHt-nc8WUSUA-igRZSELLDMEUaVUSiwwXWaxwiXlNeSkRAkF5YhQlyJPUZY1kYKsIlRpDnLKbkbf8PJuCHfpjR2cCSu1hDRP8kykSaDESFXOeu-o1p0LD7i9jkEf0tZj2jqkrY9p6ziI5CjyATYrcn_W_6h-ABadhqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3068587265</pqid></control><display><type>article</type><title>Approximate solutions to the nonlinear hyperbolic population balance equation: convergence, error estimate and numerical simulations</title><source>SpringerLink Journals - AutoHoldings</source><creator>Das, Arijit ; Saha, Jitraj</creator><creatorcontrib>Das, Arijit ; Saha, Jitraj</creatorcontrib><description>We consider a nonlinear, hyperbolic population balance equation that incorporates both aggregation and collisional breakage events simultaneously. Our approach revolves around the development of a novel time-explicit finite volume scheme. Under a suitable time-step stability condition, we prove the convergence of the approximate solution for any non-uniform mesh. A first-order convergence is obtained by a thorough error analysis of the proposed scheme for a suitable choice of kernels. Finally, we compute some numerical test examples to explore the behavior of the solution in steady-state conditions as well as the occurrence of gelation phenomena.</description><identifier>ISSN: 0044-2275</identifier><identifier>EISSN: 1420-9039</identifier><identifier>DOI: 10.1007/s00033-024-02264-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Convergence ; Engineering ; Error analysis ; Finite volume method ; Mathematical Methods in Physics ; Population balance models ; Theoretical and Applied Mechanics</subject><ispartof>Zeitschrift für angewandte Mathematik und Physik, 2024-08, Vol.75 (4), Article 125</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-52b939ab7a02c6eb3a9a6d714ade8f08e42b09e8aa0fb286a3bfee407cea46803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00033-024-02264-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00033-024-02264-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Das, Arijit</creatorcontrib><creatorcontrib>Saha, Jitraj</creatorcontrib><title>Approximate solutions to the nonlinear hyperbolic population balance equation: convergence, error estimate and numerical simulations</title><title>Zeitschrift für angewandte Mathematik und Physik</title><addtitle>Z. Angew. Math. Phys</addtitle><description>We consider a nonlinear, hyperbolic population balance equation that incorporates both aggregation and collisional breakage events simultaneously. Our approach revolves around the development of a novel time-explicit finite volume scheme. Under a suitable time-step stability condition, we prove the convergence of the approximate solution for any non-uniform mesh. A first-order convergence is obtained by a thorough error analysis of the proposed scheme for a suitable choice of kernels. Finally, we compute some numerical test examples to explore the behavior of the solution in steady-state conditions as well as the occurrence of gelation phenomena.</description><subject>Convergence</subject><subject>Engineering</subject><subject>Error analysis</subject><subject>Finite volume method</subject><subject>Mathematical Methods in Physics</subject><subject>Population balance models</subject><subject>Theoretical and Applied Mechanics</subject><issn>0044-2275</issn><issn>1420-9039</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFb_gKcFr0Ynu5svb6X4BQUvel4m6aRNSXfT3UTs3R_uthG8eRgGhud9Z-Zl7DqGuxggu_cAIGUEQoUSqYriEzaJlYCoAFmcsgmAUpEQWXLOLrzfBDyLQU7Y96zrnP1qttgT97Yd-sYaz3vL-zVxY03bGELH1_uOXGnbpuKd7YYWDxwvsUVTEafdcBw88MqaT3IrCtNbTs5Zx8n3oz2aJTfDllxTYct9s_218ZfsrMbW09Vvn7KPp8f3-Uu0eHt-nc8WUSUA-igRZSELLDMEUaVUSiwwXWaxwiXlNeSkRAkF5YhQlyJPUZY1kYKsIlRpDnLKbkbf8PJuCHfpjR2cCSu1hDRP8kykSaDESFXOeu-o1p0LD7i9jkEf0tZj2jqkrY9p6ziI5CjyATYrcn_W_6h-ABadhqw</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Das, Arijit</creator><creator>Saha, Jitraj</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240801</creationdate><title>Approximate solutions to the nonlinear hyperbolic population balance equation: convergence, error estimate and numerical simulations</title><author>Das, Arijit ; Saha, Jitraj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-52b939ab7a02c6eb3a9a6d714ade8f08e42b09e8aa0fb286a3bfee407cea46803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Convergence</topic><topic>Engineering</topic><topic>Error analysis</topic><topic>Finite volume method</topic><topic>Mathematical Methods in Physics</topic><topic>Population balance models</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Das, Arijit</creatorcontrib><creatorcontrib>Saha, Jitraj</creatorcontrib><collection>CrossRef</collection><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Das, Arijit</au><au>Saha, Jitraj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximate solutions to the nonlinear hyperbolic population balance equation: convergence, error estimate and numerical simulations</atitle><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle><stitle>Z. Angew. Math. Phys</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>75</volume><issue>4</issue><artnum>125</artnum><issn>0044-2275</issn><eissn>1420-9039</eissn><abstract>We consider a nonlinear, hyperbolic population balance equation that incorporates both aggregation and collisional breakage events simultaneously. Our approach revolves around the development of a novel time-explicit finite volume scheme. Under a suitable time-step stability condition, we prove the convergence of the approximate solution for any non-uniform mesh. A first-order convergence is obtained by a thorough error analysis of the proposed scheme for a suitable choice of kernels. Finally, we compute some numerical test examples to explore the behavior of the solution in steady-state conditions as well as the occurrence of gelation phenomena.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00033-024-02264-1</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-2275 |
ispartof | Zeitschrift für angewandte Mathematik und Physik, 2024-08, Vol.75 (4), Article 125 |
issn | 0044-2275 1420-9039 |
language | eng |
recordid | cdi_proquest_journals_3068587265 |
source | SpringerLink Journals - AutoHoldings |
subjects | Convergence Engineering Error analysis Finite volume method Mathematical Methods in Physics Population balance models Theoretical and Applied Mechanics |
title | Approximate solutions to the nonlinear hyperbolic population balance equation: convergence, error estimate and numerical simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T09%3A11%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximate%20solutions%20to%20the%20nonlinear%20hyperbolic%20population%20balance%20equation:%20convergence,%20error%20estimate%20and%20numerical%20simulations&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Physik&rft.au=Das,%20Arijit&rft.date=2024-08-01&rft.volume=75&rft.issue=4&rft.artnum=125&rft.issn=0044-2275&rft.eissn=1420-9039&rft_id=info:doi/10.1007/s00033-024-02264-1&rft_dat=%3Cproquest_cross%3E3068587265%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3068587265&rft_id=info:pmid/&rfr_iscdi=true |