Approximate solutions to the nonlinear hyperbolic population balance equation: convergence, error estimate and numerical simulations

We consider a nonlinear, hyperbolic population balance equation that incorporates both aggregation and collisional breakage events simultaneously. Our approach revolves around the development of a novel time-explicit finite volume scheme. Under a suitable time-step stability condition, we prove the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für angewandte Mathematik und Physik 2024-08, Vol.75 (4), Article 125
Hauptverfasser: Das, Arijit, Saha, Jitraj
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a nonlinear, hyperbolic population balance equation that incorporates both aggregation and collisional breakage events simultaneously. Our approach revolves around the development of a novel time-explicit finite volume scheme. Under a suitable time-step stability condition, we prove the convergence of the approximate solution for any non-uniform mesh. A first-order convergence is obtained by a thorough error analysis of the proposed scheme for a suitable choice of kernels. Finally, we compute some numerical test examples to explore the behavior of the solution in steady-state conditions as well as the occurrence of gelation phenomena.
ISSN:0044-2275
1420-9039
DOI:10.1007/s00033-024-02264-1