Multi-Dimensional Fused Gromov Wasserstein Discrepancy for Edge-Attributed Graphs

Graph dissimilarities provide a powerful and ubiquitous approach for applying machine learning algorithms to edge-attributed graphs. However, conventional optimal transport-based dissimilarities cannot handle edge-attributes. In this paper, we propose an optimal transport-based dissimilarity between...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Information and Systems 2024/05/01, Vol.E107.D(5), pp.683-693
Hauptverfasser: KAWANO, Keisuke, KOIDE, Satoshi, SHIOKAWA, Hiroaki, AMAGASA, Toshiyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Graph dissimilarities provide a powerful and ubiquitous approach for applying machine learning algorithms to edge-attributed graphs. However, conventional optimal transport-based dissimilarities cannot handle edge-attributes. In this paper, we propose an optimal transport-based dissimilarity between graphs with edge-attributes. The proposed method, multi-dimensional fused Gromov-Wasserstein discrepancy (MFGW), naturally incorporates the mismatch of edge-attributes into the optimal transport theory. Unlike conventional optimal transport-based dissimilarities, MFGW can directly handle edge-attributes in addition to structural information of graphs. Furthermore, we propose an iterative algorithm, which can be computed on GPUs, to solve non-convex quadratic programming problems involved in MFGW. Experimentally, we demonstrate that MFGW outperforms the conventional optimal transport-based dissimilarity in several machine learning applications including supervised classification, subgraph matching, and graph barycenter calculation.
ISSN:0916-8532
1745-1361
DOI:10.1587/transinf.2023DAP0014