An algorithm for generating efficient block designs via a novel particle swarm approach
The problem of finding optimal block designs can be formulated as a combinatorial optimization, but its resolution is still a formidable challenge. This paper presents a general and user-friendly algorithm, namely Modified Particle Swarm Optimization (MPSO), to construct optimal or near-optimal bloc...
Gespeichert in:
Veröffentlicht in: | Computational statistics 2024-07, Vol.39 (5), p.2437-2449 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The problem of finding optimal block designs can be formulated as a combinatorial optimization, but its resolution is still a formidable challenge. This paper presents a general and user-friendly algorithm, namely Modified Particle Swarm Optimization (MPSO), to construct optimal or near-optimal block designs. It can be used for several classes of block designs such as binary, non-binary and test-control block designs with correlated or uncorrelated observations. In order to evaluate the algorithm, we compare our results with the optimal designs presented in some published papers. An advantage of our algorithm is its independency to the sizes of blocks and the structure of correlations. |
---|---|
ISSN: | 0943-4062 1613-9658 |
DOI: | 10.1007/s00180-023-01369-x |