Entanglement properties of optomagnonic crystal from nonlinear perspective
Optomagnonics is a new field of research in condensed matter physics and quantum optics focused on strong magnon-photon interactions. Particular interest concerns realistic, experimentally feasible materials and prototype cheap elements for futuristic nanodevices implemented in the processing or sto...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-06 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Optomagnonics is a new field of research in condensed matter physics and quantum optics focused on strong magnon-photon interactions. Particular interest concerns realistic, experimentally feasible materials and prototype cheap elements for futuristic nanodevices implemented in the processing or storing of quantum information. Quantifying the entanglement between two continuous bosonic modes, such as magnons and photons, is not trivial. The state-of-the-art for today is the logarithmic negativity, calculated through the quantum Langevin equations subjected to thermal noise. However, due to its complexity, this method requires further approximation. In the present work, we propose a new procedure that avoids the linearization of dynamics. Prior analyzing the quantum entanglement, we explore the nonlinear semiclassical dynamics in detail and precisely define the phase space. The typical nonlinear dynamical system holds bifurcation points and fixed points of different characters in its phase space. Our main finding is that entanglement is not defined in the Saddle Point region. On the other hand, the maximum of the entanglement corresponds to the region near the border between the Stable node and Stable spiral regions. In numerical calculations, we considered a particular system: optomagnonic crystal based on the yttrium iron garnet (YIG) slab with the periodic air holes drilled in the slab. In our case, Magnon-photon interaction occurs due to the magneto-electric effect in YIG. We provide explicit derivation of the coupling term. Besides, we calculate photon modes for a particular geometry of the optomagnonic crystal. We analyzed the amplitude-frequency characteristics of the optomagnonic crystal and showed that due to the instability region, one could efficiently switch the mean magnon numbers in the system and control entanglement in the system. |
---|---|
ISSN: | 2331-8422 |