Schauder Estimates for Nonlocal Equations with Singular Lévy Measures
In this paper, we establish Schauder’s estimates for the following non-local equations in R d : ∂ t u = L κ , σ ( α ) u + b · ∇ u + f , u ( 0 ) = 0 , where α ∈ ( 1 / 2 , 2 ) and b : R + × R d → R is an unbounded local β -order Hölder function in x uniformly in t , and L κ , σ ( α ) is a non-local α...
Gespeichert in:
Veröffentlicht in: | Potential analysis 2024-06, Vol.61 (1), p.13-33 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we establish Schauder’s estimates for the following non-local equations in
R
d
:
∂
t
u
=
L
κ
,
σ
(
α
)
u
+
b
·
∇
u
+
f
,
u
(
0
)
=
0
,
where
α
∈
(
1
/
2
,
2
)
and
b
:
R
+
×
R
d
→
R
is an unbounded local
β
-order Hölder function in
x
uniformly in
t
, and
L
κ
,
σ
(
α
)
is a non-local
α
-stable-like operator with form:
L
κ
,
σ
(
α
)
u
(
t
,
x
)
:
=
∫
R
d
(
u
(
t
,
x
+
σ
(
t
,
x
)
z
)
-
u
(
t
,
x
)
-
σ
(
t
,
x
)
z
(
α
)
·
∇
u
(
t
,
x
)
)
κ
(
t
,
x
,
z
)
ν
(
α
)
(
d
z
)
,
where
z
(
α
)
=
z
1
α
∈
(
1
,
2
)
+
z
1
|
z
|
≤
1
1
α
=
1
,
κ
:
R
+
×
R
2
d
→
R
+
is bounded from above and below,
σ
:
R
+
×
R
d
→
R
d
⊗
R
d
is a
γ
-order Hölder continuous function in
x
uniformly in
t
, and
ν
α
)
is a singular non-degenerate
α
-stable Lévy measure. |
---|---|
ISSN: | 0926-2601 1572-929X |
DOI: | 10.1007/s11118-023-10101-9 |