Julia Robinson and Hilbert’s Tenth Problem

Hilbert’s Tenth Problem asks whether there is an algorithmic procedure to solve Diophantine equations (polynomial equations with integer coefficients) for integer solutions. This famous problem was shown to be unsolvable by Yuri Matiyasevič in 1970. In other words, there is no algorithm that can dec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Resonance 2024-06, Vol.29 (6), p.747-757
Hauptverfasser: Radhakrishnan, Jaikumar, Suresh, S. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hilbert’s Tenth Problem asks whether there is an algorithmic procedure to solve Diophantine equations (polynomial equations with integer coefficients) for integer solutions. This famous problem was shown to be unsolvable by Yuri Matiyasevič in 1970. In other words, there is no algorithm that can decide in general whether a given Diophantine equations has integer solutions or not. This negative solution builds on a long line of work by Martin Davis, Hilary Putnam, and importantly, Julia Robinson. In this article, we briefly describe the problem, its unsolvability, and Julia Robinson’s contribution.
ISSN:0973-712X
0971-8044
0973-712X
DOI:10.1007/s12045-024-0747-4