A polynomial‐time approximation scheme for the maximal overlap of two independent Erdős–Rényi graphs
For two independent Erdős–Rényi graphs G(n,p)$$ \mathbf{G}\left(n,p\right) $$, we study the maximal overlap (i.e., the number of common edges) of these two graphs over all possible vertex correspondence. We present a polynomial‐time algorithm which finds a vertex correspondence whose overlap approxi...
Gespeichert in:
Veröffentlicht in: | Random structures & algorithms 2024-08, Vol.65 (1), p.220-257 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For two independent Erdős–Rényi graphs G(n,p)$$ \mathbf{G}\left(n,p\right) $$, we study the maximal overlap (i.e., the number of common edges) of these two graphs over all possible vertex correspondence. We present a polynomial‐time algorithm which finds a vertex correspondence whose overlap approximates the maximal overlap up to a multiplicative factor that is arbitrarily close to 1. As a by‐product, we prove that the maximal overlap is asymptotically n2α−1$$ \frac{n}{2\alpha -1} $$ for p=n−α$$ p={n}^{-\alpha } $$ with some constant α∈(1/2,1)$$ \alpha \in \left(1/2,1\right) $$. |
---|---|
ISSN: | 1042-9832 1098-2418 |
DOI: | 10.1002/rsa.21212 |