Thinking of Green, Low Carbon, and Energy-Saving Designs Based on the Variable Ventilation of Natatoriums: Taking the Jiading Natatorium of Tongji University as an Example

With the increasing demand for sports activities, sports architecture is flourishing. Creating a comfortable and healthy fitness environment while reducing energy consumption has become a focus for architects. Taking the Jiading Natatorium at Tongji University in Shanghai as an example, this study r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2024-06, Vol.16 (11), p.4476
Hauptverfasser: Qian, Feng, Shi, Zedao, Yang, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the increasing demand for sports activities, sports architecture is flourishing. Creating a comfortable and healthy fitness environment while reducing energy consumption has become a focus for architects. Taking the Jiading Natatorium at Tongji University in Shanghai as an example, this study researched green energy in the variable ventilation of sports venues. The Autodesk Ecotect Analysis 2011 was used to conduct computational fluid dynamics (CFD) simulation analyses on four scenarios of opening and closing the swimming pool’s roof, with ventilation velocity as the primary evaluation indicator to assess the ventilation environment of each scenario. The relationship between the opening ratio of the roof and the ventilation environment of sports buildings was explored. The results showed that when the opening ratio is 37.5%, it achieves good ventilation effectiveness and avoids excessive wind pressure. The study also summarized six common forms of opening and closing roof structures and compared the differences in wind environments of different roof forms. The results indicated that the shape and opening ratio of the roof has a decisive impact on the distribution of indoor wind speed in buildings. Six optimal opening ratios for different roof forms in summer and suitable site conditions were summarized, providing a reference for the design and selection of swimming pool roofs. Furthermore, the wind speed distribution of different roof types showed a trend of gradually becoming uniform with the increase in opening area. However, the position of the wind speed peak is related to the form and size of the roof opening. This research provides valuable references for the low carbon and energy-efficient design of future swimming pool sports buildings.
ISSN:2071-1050
2071-1050
DOI:10.3390/su16114476