Enhancing Road Crack Localization for Sustainable Road Safety Using HCTNet
Road crack detection is crucial for maintaining and inspecting civil infrastructure, as cracks can pose a potential risk for sustainable road safety. Traditional methods for pavement crack detection are labour-intensive and time-consuming. In recent years, computer vision approaches have shown encou...
Gespeichert in:
Veröffentlicht in: | Sustainability 2024-06, Vol.16 (11), p.4409 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Road crack detection is crucial for maintaining and inspecting civil infrastructure, as cracks can pose a potential risk for sustainable road safety. Traditional methods for pavement crack detection are labour-intensive and time-consuming. In recent years, computer vision approaches have shown encouraging results in automating crack localization. However, the classical convolutional neural network (CNN)-based approach lacks global attention to the spatial features. To improve the crack localization in the road, we designed a vision transformer (ViT) and convolutional neural networks (CNNs)-based encoder and decoder. In addition, a gated-attention module in the decoder is designed to focus on the upsampling process. Furthermore, we proposed a hybrid loss function using binary cross-entropy and Dice loss to evaluate the model’s effectiveness. Our method achieved a recall, F1-score, and IoU of 98.54%, 98.07%, and 98.72% and 98.27%, 98.69%, and 98.76% on the Crack500 and Crack datasets, respectively. Meanwhile, on the proposed dataset, these figures were 96.89%, 97.20%, and 97.36%. |
---|---|
ISSN: | 2071-1050 2071-1050 |
DOI: | 10.3390/su16114409 |