MEDAL: A Multimodality-Based Effective Data Augmentation Framework for Illegal Website Identification

The emergence of illegal (gambling, pornography, and attraction) websites seriously threatens the security of society. Due to the concealment of illegal websites, it is difficult to obtain labeled data with high quantity. Meanwhile, most illegal websites usually disguise themselves to avoid detectio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2024-06, Vol.13 (11), p.2199
Hauptverfasser: Wen, Li, Zhang, Min, Wang, Chenyang, Guo, Bingyang, Ma, Huimin, Xue, Pengfei, Ding, Wanmeng, Zheng, Jinghua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The emergence of illegal (gambling, pornography, and attraction) websites seriously threatens the security of society. Due to the concealment of illegal websites, it is difficult to obtain labeled data with high quantity. Meanwhile, most illegal websites usually disguise themselves to avoid detection; for example, some gambling websites may visually resemble gaming websites. However, existing methods ignore the means of camouflage in a single modality. To address the above problems, this paper proposes MEDAL, a multimodality-based effective data augmentation framework for illegal website identification. First, we established an illegal website identification framework based on tri-training that combines information from different modalities (including image, text, and HTML) while making full use of numerous unlabeled data. Then, we designed a multimodal mutual assistance module that is integrated with the tri-training framework to mitigate the introduction of error information resulting from an unbalanced single-modal classifier performance in the tri-training process. Finally, the experimental results on the self-developed dataset demonstrate the effectiveness of the proposed framework, performing well on accuracy, precision, recall, and F1 metrics.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics13112199