Fault-Tolerant Cooperative Control of Multiple Uncertain Euler-Lagrange Systems with an Uncertain Leader
This paper explores the fault-tolerant cooperative control of multiagent systems, which are modeled via an uncertain leader system and multiple uncertain Euler–Lagrange systems with actuator faults. A self-adjusting observer is initially proposed to estimate the signal of the uncertain leader for di...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2024-06, Vol.13 (11), p.2068 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper explores the fault-tolerant cooperative control of multiagent systems, which are modeled via an uncertain leader system and multiple uncertain Euler–Lagrange systems with actuator faults. A self-adjusting observer is initially proposed to estimate the signal of the uncertain leader for different followers and compute the observer gain in real time. An adaptive fault-tolerant controller is designed based on the above observer and nonsingular fast terminal sliding mode surface. This controller estimates lumped uncertainty and ensures that tracking errors are ultimately bounded. The controller designed in this paper has the following three advantages. Firstly, the observer can estimate and transmit the leader’s state to each follower even without precise knowledge of the leader’s system matrix. Secondly, the controller is robust to actuator faults, uncertain parameters and external disturbances, the upper bounds of which can be arbitrarily large and unidentified. Thirdly, the controller has a simple structure and is also suitable for situations where the actuator is healthy. Lastly, simulations are provided to demonstrate the effectiveness of both the observer and the controller with or without actuator fault. |
---|---|
ISSN: | 2079-9292 2079-9292 |
DOI: | 10.3390/electronics13112068 |