TAR: A Highly Accurate Machine-Learning Model to Predict the Cocoon Shell Weight of Tasar Silkworm Antheraea Mylitta
In this paper, we propose a machine-learning model for predicting the shell weight of silkworm cocoons Antheraea mylitta D. ( Saturnidae ) without cutting open the cocoon. Our proposed work uses a topology adaptive kernel regression (TAR) to predict the shell weight of cocoons based on a set of non-...
Gespeichert in:
Veröffentlicht in: | Agricultural research (India : Online) 2024, Vol.13 (2), p.375-380 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we propose a machine-learning model for predicting the shell weight of silkworm cocoons
Antheraea mylitta D.
(
Saturnidae
) without cutting open the cocoon. Our proposed work uses a topology adaptive kernel regression (TAR) to predict the shell weight of cocoons based on a set of non-invasive easy-to-measure cocoon features. We evaluate our model on four datasets from different families of cocoons. The evaluation shows that the proposed model accurately predicts the shell weight and outperforms well-known models, including neural network-based regression. |
---|---|
ISSN: | 2249-720X 2249-7218 |
DOI: | 10.1007/s40003-023-00687-2 |