TAR: A Highly Accurate Machine-Learning Model to Predict the Cocoon Shell Weight of Tasar Silkworm Antheraea Mylitta

In this paper, we propose a machine-learning model for predicting the shell weight of silkworm cocoons Antheraea mylitta D. ( Saturnidae ) without cutting open the cocoon. Our proposed work uses a topology adaptive kernel regression (TAR) to predict the shell weight of cocoons based on a set of non-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Agricultural research (India : Online) 2024, Vol.13 (2), p.375-380
Hauptverfasser: Alam, Khasru, Paik, Jiaul H., Saha, Soumen, Suresh, Raviraj V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a machine-learning model for predicting the shell weight of silkworm cocoons Antheraea mylitta D. ( Saturnidae ) without cutting open the cocoon. Our proposed work uses a topology adaptive kernel regression (TAR) to predict the shell weight of cocoons based on a set of non-invasive easy-to-measure cocoon features. We evaluate our model on four datasets from different families of cocoons. The evaluation shows that the proposed model accurately predicts the shell weight and outperforms well-known models, including neural network-based regression.
ISSN:2249-720X
2249-7218
DOI:10.1007/s40003-023-00687-2