Chromosome doubling of the bioenergy crop, Miscanthus×giganteus

The perennial grass, Miscanthus×giganteus is a sterile triploid, which due to its growth rate and biomass accumulation has significant economic potential as a new bioenergy crop. The sterility associated with the triploid genome of this accession requires labor‐intensive vegetative, instead of seed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global change biology. Bioenergy 2009-12, Vol.1 (6), p.404-412
Hauptverfasser: YU, CHANG YEON, KIM, HYOUNG SEOK, RAYBURN, A. LANE, WIDHOLM, JACK M., JUVIK, JOHN A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The perennial grass, Miscanthus×giganteus is a sterile triploid, which due to its growth rate and biomass accumulation has significant economic potential as a new bioenergy crop. The sterility associated with the triploid genome of this accession requires labor‐intensive vegetative, instead of seed propagation for potential commercial production. Chromosome doubling was used to produce hexaploid plants in an effort to restore fertility to M×giganteus. Tissue culture derived calli from immature inflorescences were treated with the antimitotic agents, colchicine and oryzalin in liquid and solid media. Calli survival rate decreased with increasing concentrations and durations of colchicine or oryzalin treatments and ranged from 0% to 100%. Nuclear DNA content, as determined by flow cytometry, indicated that the frequency of chromosome‐doubled calli varied between compounds and concentrations with the greatest proportion of callus doubling observed using 2‐day treatments of 15 μm oryzalin (78%) or 939 μm colchicine (67%). Liquid media treatments were more effective than solid gels for chromosome doubling. Although oryzalin was effective at chromosome doubling, it inhibited callus growth and plant regeneration frequency. Seven hexaploid plants with doubled DNA content were generated, which displayed increased stomata size (30.0±0.2 μm) compared with regenerated triploid M. ×giganteus plants (24.3±1.0 μm). Following clonal replication these plants will be evaluated for growth rate, biomass accumulation, and pollen viability. Successful chromosome doubling and plant regeneration of M.×giganteus suggests that ploidy manipulation of this plant and its parental species (Miscanthus sinensis and Miscanthus sacchariflorus) could be a means to access genetic variability for the improvement of Miscanthus as a biofuel/bioenergy crop.
ISSN:1757-1693
1757-1707
DOI:10.1111/j.1757-1707.2010.01032.x