An away-step Frank–Wolfe algorithm for constrained multiobjective optimization

In this paper, we propose and analyze an away-step Frank–Wolfe algorithm designed for solving multiobjective optimization problems over polytopes. We prove that each limit point of the sequence generated by the algorithm is a weak Pareto optimal solution. Furthermore, under additional conditions, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational optimization and applications 2024-07, Vol.88 (3), p.759-781
Hauptverfasser: Gonçalves, Douglas S., Gonçalves, Max L. N., Melo, Jefferson G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose and analyze an away-step Frank–Wolfe algorithm designed for solving multiobjective optimization problems over polytopes. We prove that each limit point of the sequence generated by the algorithm is a weak Pareto optimal solution. Furthermore, under additional conditions, we show linear convergence of the whole sequence to a Pareto optimal solution. Numerical examples illustrate a promising performance of the proposed algorithm in problems where the multiobjective Frank–Wolfe convergence rate is only sublinear.
ISSN:0926-6003
1573-2894
DOI:10.1007/s10589-024-00577-5