An away-step Frank–Wolfe algorithm for constrained multiobjective optimization
In this paper, we propose and analyze an away-step Frank–Wolfe algorithm designed for solving multiobjective optimization problems over polytopes. We prove that each limit point of the sequence generated by the algorithm is a weak Pareto optimal solution. Furthermore, under additional conditions, we...
Gespeichert in:
Veröffentlicht in: | Computational optimization and applications 2024-07, Vol.88 (3), p.759-781 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we propose and analyze an
away-step
Frank–Wolfe algorithm designed for solving multiobjective optimization problems over polytopes. We prove that each limit point of the sequence generated by the algorithm is a weak Pareto optimal solution. Furthermore, under additional conditions, we show linear convergence of the whole sequence to a Pareto optimal solution. Numerical examples illustrate a promising performance of the proposed algorithm in problems where the multiobjective Frank–Wolfe convergence rate is only sublinear. |
---|---|
ISSN: | 0926-6003 1573-2894 |
DOI: | 10.1007/s10589-024-00577-5 |