Emotion-Aware Speech Self-Supervised Representation Learning with Intensity Knowledge
Speech Self-Supervised Learning (SSL) has demonstrated considerable efficacy in various downstream tasks. Nevertheless, prevailing self-supervised models often overlook the incorporation of emotion-related prior information, thereby neglecting the potential enhancement of emotion task comprehension...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-06 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Speech Self-Supervised Learning (SSL) has demonstrated considerable efficacy in various downstream tasks. Nevertheless, prevailing self-supervised models often overlook the incorporation of emotion-related prior information, thereby neglecting the potential enhancement of emotion task comprehension through emotion prior knowledge in speech. In this paper, we propose an emotion-aware speech representation learning with intensity knowledge. Specifically, we extract frame-level emotion intensities using an established speech-emotion understanding model. Subsequently, we propose a novel emotional masking strategy (EMS) to incorporate emotion intensities into the masking process. We selected two representative models based on Transformer and CNN, namely MockingJay and Non-autoregressive Predictive Coding (NPC), and conducted experiments on IEMOCAP dataset. Experiments have demonstrated that the representations derived from our proposed method outperform the original model in SER task. |
---|---|
ISSN: | 2331-8422 |