Crack mechanism of ground fissures in loess layer of Fenwei Basin, China

The Fenwei Basin, covered by loess, experiences severe ground fissure disasters. These disasters disrupt the continuity of the loess and pose significant threats to engineering construction safety along transportation routes. Nevertheless, the crack characteristics and the influence zone of ground f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mountain science 2024, Vol.21 (5), p.1683-1696
Hauptverfasser: Li, Cong, Lu, Quanzhong, Wang, Feiyong, Luo, Wenchao, Xu, Qiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Fenwei Basin, covered by loess, experiences severe ground fissure disasters. These disasters disrupt the continuity of the loess and pose significant threats to engineering construction safety along transportation routes. Nevertheless, the crack characteristics and the influence zone of ground fissures in the loess layer remain inadequately investigated. To effectively prevent and control ground fissure disasters, physical model tests and the PFC (particle flow code) numerical simulation method are used to investigate the crack mechanism of buried ground fissures in the loess layer. The results show that there are two main cracks in the layer profile, which have a Y-shape morphology. As the dip angle of the preset cracks increased from 60° to 90°, the main deformation zone at the surface gradually shifted towards the footwall. The process of crack propagation from depth to surface is divided into five stages. Additionally, the results confirm the accuracy of the width of the rupture zone d 2 in the footwall calculated by the cantilever beam theory. These findings can offer theoretical guidance for determining the avoidance distance of ground fissures in loess regions, as well as for implementing disaster prevention and corresponding control measures for various stages of buried ground fissure propagation.
ISSN:1672-6316
1993-0321
1008-2786
DOI:10.1007/s11629-023-8514-7