A generalization of Banach’s lemma and its applications to perturbations of bounded linear operators

Let X be a Banach space and let P : X → X be a bounded linear operator. Using an algebraic inequality on the spectrum of P , we give a new sufficient condition that guarantees the existence of ( I – P ) −1 as a bounded linear operator on X , and a bound on its spectral radius is also obtained. This...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mathematics-A Journal of Chinese Universities 2024-06, Vol.39 (2), p.363-369
Hauptverfasser: Wang, Zi, Ding, Jiu, Wang, Yu-wen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let X be a Banach space and let P : X → X be a bounded linear operator. Using an algebraic inequality on the spectrum of P , we give a new sufficient condition that guarantees the existence of ( I – P ) −1 as a bounded linear operator on X , and a bound on its spectral radius is also obtained. This generalizes the classic Banach lemma. We apply the result to the perturbation analysis of general bounded linear operators on X with commutative perturbations.
ISSN:1005-1031
1993-0445
DOI:10.1007/s11766-024-4872-3