A generalization of Banach’s lemma and its applications to perturbations of bounded linear operators
Let X be a Banach space and let P : X → X be a bounded linear operator. Using an algebraic inequality on the spectrum of P , we give a new sufficient condition that guarantees the existence of ( I – P ) −1 as a bounded linear operator on X , and a bound on its spectral radius is also obtained. This...
Gespeichert in:
Veröffentlicht in: | Applied Mathematics-A Journal of Chinese Universities 2024-06, Vol.39 (2), p.363-369 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
X
be a Banach space and let
P
:
X
→
X
be a bounded linear operator. Using an algebraic inequality on the spectrum of
P
, we give a new sufficient condition that guarantees the existence of (
I
–
P
)
−1
as a bounded linear operator on
X
, and a bound on its spectral radius is also obtained. This generalizes the classic Banach lemma. We apply the result to the perturbation analysis of general bounded linear operators on
X
with commutative perturbations. |
---|---|
ISSN: | 1005-1031 1993-0445 |
DOI: | 10.1007/s11766-024-4872-3 |