Adsorptive avidity of Prussian blue polypyrrole nanocomposite for elimination of water contaminants: a case study of malachite green and isoniazid
Persistent water contaminants include a variety of substances that evade natural cleaning processes posing severe risks to ecosystems. Their adsorptive elimination is a key approach to safer attenuation. Herein we present the design and development of Prussian blue incorporated polypyrrole (PPY/PB)...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2024-06, Vol.26 (23), p.1682-1682 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Persistent water contaminants include a variety of substances that evade natural cleaning processes posing severe risks to ecosystems. Their adsorptive elimination is a key approach to safer attenuation. Herein we present the design and development of Prussian blue incorporated polypyrrole (PPY/PB) hybrid nanocomposite as a high-performance adsorbent for the elimination of malachite green (M.G.), isoniazid (INH) and 4-nitrophenol (4-NP) water contaminants. The nanocomposite synthesis was favored by strong dopant-polymer interactions, leading to a PPY/PB material with enhanced electro-active surface area compared to pristine PPY. The structure-activity response of the nanocomposite for the adsorption of target contaminants was unveiled by evaluating its maximum adsorption capacities under environmentally viable conditions. In-depth analysis and optimization of adsorption influencing factors (pH, temperature, and adsorbent dose) were performed. Using equilibrium studies, kinetic model fitting, aided with FTIR analysis, a multi-step mechanism for the adsorption of target contaminants on the nanocomposite was proposed. Furthermore, the PPY/PB nanocomposite also acts as a catalyst, enabling contaminant elimination following a synergistic scheme that was demonstrated using 4-NP contaminant. The synergetic adsorption and catalytic degradation of 4-NP using PPY/PB as adsorbent and catalyst was demonstrated in the presence of NaBH
4
as a reducing agent in absence of light. In summary, this work highlights the targeted design of adsorbent, its optimization for adsorptive avidity, and the synergistic role of adsorption trapping in the catalytic degradation of persistent contaminants.
Polypyrrole/Prussian blue hybrid adsorbent for contaminant remediation at pH 7, adsorption assisted reduction of 4-nitrophenol. Synergistic effects under which adsorption concentrates contaminants for effective degradation and self-cleansing. |
---|---|
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/d4cp01053a |