Investigation of far-wake models coupled with yaw-induction control for power optimization
Combined wake steering and induction control is a promising strategy for increasing collective wind farm power production over standard turbine control. However, computationally efficient models for predicting optimal control set points still need to be tested against high-fidelity simulations, part...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2024-06, Vol.2767 (9), p.092103 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Combined wake steering and induction control is a promising strategy for increasing collective wind farm power production over standard turbine control. However, computationally efficient models for predicting optimal control set points still need to be tested against high-fidelity simulations, particularly in regimes of high rotor thrust. In this study, large eddy simulations (LES) are used to investigate a two-turbine array using actuator disk modeling in conventionally neutral atmospheric conditions. The thrust coefficient and yaw-misalignment angle are independently prescribed to the upwind turbine in each simulation while downwind turbine operation is fixed. Analyzing the LES velocity fields shows that near-wake length decreases and wake recovery rate increases with increasing thrust. We model the wake behavior with a physics-based near-wake and induction model coupled with a Gaussian far-wake model. The near-wake model predicts the turbine thrust and power depending on the wake steering and induction control set point. The initial wake velocities predicted by the near-wake model are validated against LES data, and a calibrated far-wake model is used to estimate the power maximizing control set point and power gain. Both model-predicted and LES optimal set points exhibit increases in yaw angle and thrust coefficient for the leading turbine relative to standard control. The model-optimal set point predicts a power gain of 18.1% while the LES optimal set point results in a power gain of 20.7%. In contrast, using a tuned cosine model for the power-yaw relationship results in a set point with a lower magnitude of yaw, a thrust coefficient lower than in standard control, and predicts a power gain of 13.7%. Using the physics-based, model-predicted set points in LES results in a power within 1.5% of optimal, showing potential for joint yaw-induction control as a method for predictably increasing wind farm power output. |
---|---|
ISSN: | 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/2767/9/092103 |