Deposition of a‐C:H:SiOx Coatings Using Low‐Frequency Inductively Coupled Plasma
This article investigates the plasma‐enhanced chemical vapor deposition of a‐C:H:SiOx coatings in a non‐self‐sustaining arc discharge plasma with a hot cathode in combination with a low‐frequency (200 kHz) inductively coupled plasma. It is shown that increasing the inductor power from 0 to 600 W lea...
Gespeichert in:
Veröffentlicht in: | Physica status solidi. A, Applications and materials science Applications and materials science, 2024-06, Vol.221 (11), p.n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article investigates the plasma‐enhanced chemical vapor deposition of a‐C:H:SiOx coatings in a non‐self‐sustaining arc discharge plasma with a hot cathode in combination with a low‐frequency (200 kHz) inductively coupled plasma. It is shown that increasing the inductor power from 0 to 600 W leads to a twofold increase in the ion current density on the substrate. An increase in ion bombardment intensity results in a 1.3‐fold reduction in the coating's growth rate due to the resputtering phenomenon, a 1.5‐fold reduction in surface roughness, and an improvement in the mechanical properties of the coatings. The hardness of the coating is increased by 9–11%, the plasticity index by 10–17%, and the resistance to plastic deformation by 32–49%.
a‐C:H:SiOx coatings are synthesized by the plasma‐enhanced chemical vapor deposition in a non‐self‐sustaining arc discharge plasma with a hot cathode in combination with a low‐frequency (200 kHz) inductively coupled plasma. Surface roughness is reduced and mechanical properties are improved by increasing the ion bombardment intensity of the coating. |
---|---|
ISSN: | 1862-6300 1862-6319 |
DOI: | 10.1002/pssa.202300890 |