Integrated control method for path tracking and lateral stability of distributed drive electric vehicles with extended Kalman filter–based tire cornering stiffness estimation

Aiming at the lack of adaptability of vehicle parameters under extreme conditions, this paper proposes an integrated control method for path tracking and lateral stability of distributed drive electric vehicles based on tire cornering stiffness adaptive model predictive control (MPC) scheme. The con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of vibration and control 2024-06, Vol.30 (11-12), p.2582-2595
Hauptverfasser: Qi, Gengxin, Yue, Ming, Shangguan, Jinyong, Guo, Lie, Zhao, Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aiming at the lack of adaptability of vehicle parameters under extreme conditions, this paper proposes an integrated control method for path tracking and lateral stability of distributed drive electric vehicles based on tire cornering stiffness adaptive model predictive control (MPC) scheme. The control method integrates active front steering and direct yaw control to improve the path tracking and lateral stability performance of distributed drive electric vehicles. Firstly, considering the influence of vertical load transfer, the tire cornering stiffness is estimated based on the extended Kalman filter (EKF) algorithm. Then, using this online updated tire cornering stiffness value, an adaptive MPC controller for path tracking and lateral motion stability of distributed drive electric vehicles is constructed. Meanwhile, a fuzzy sliding mode control (Fuzzy-SMC)–based longitudinal velocity controller is established to ensure the accuracy of velocity tracking. Also, according to the distributed driving characteristics of the controlled system, a tire torque distributor based on weighted pseudo-inverse (WPI) is designed with the minimum tire load rate as the optimization objective, where the road adhesion condition and the maximum output torque of the motor are considered as constraints. The simulation results show that the proposed integrated control method based on tire cornering stiffness adaptive model predictive control is robust and effective. Compared with constant cornering stiffness model predictive control–based control method, it can improve the vehicle path tracking accuracy and lateral motion stability under extreme conditions.
ISSN:1077-5463
1741-2986
DOI:10.1177/10775463231181635