Generalized Ricci Surfaces
We consider smooth Riemannian surfaces whose curvature K satisfies the relation Δ log | K - c | = a K + b away from points where K = c for some ( a , b , c ) ∈ R 3 , which we call generalized Ricci surfaces. We prove some isometric immersion theorems allowing points where K = c using properties of l...
Gespeichert in:
Veröffentlicht in: | The Journal of geometric analysis 2024-08, Vol.34 (8), Article 255 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider smooth Riemannian surfaces whose curvature
K
satisfies the relation
Δ
log
|
K
-
c
|
=
a
K
+
b
away from points where
K
=
c
for some
(
a
,
b
,
c
)
∈
R
3
, which we call generalized Ricci surfaces. We prove some isometric immersion theorems allowing points where
K
=
c
using properties of log-harmonic functions. For instance, we obtain a characterization of Riemannian surfaces that locally admit minimal isometric immersions, possibly with umbilical points, into a 3-dimensional Riemannian manifold of constant sectional curvature. We also give an application to convex affine spheres. Finally, we study compact generalized Ricci surfaces: we obtain topological obstructions and construct examples. |
---|---|
ISSN: | 1050-6926 1559-002X |
DOI: | 10.1007/s12220-024-01706-6 |