Chemically Regulated Conical Channel Synapse for Neuromorphic and Sensing Applications
Fluidic iontronics offer a unique capability for emulating the chemical processes found in neurons. We extract multiple distinct chemically regulated synaptic features from a single conical microfluidic channel carrying functionalized surface groups, using finite-element calculations of continuum tr...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-06 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fluidic iontronics offer a unique capability for emulating the chemical processes found in neurons. We extract multiple distinct chemically regulated synaptic features from a single conical microfluidic channel carrying functionalized surface groups, using finite-element calculations of continuum transport equations. Such channels have long been employed for fluidic sensing and are therefore experimentally well established. By modeling a Langmuir-type surface reaction on the channel wall we couple fast voltage-induced volumetric salt accumulation with a long-term channel surface charge modulation by means of fast charging and slow discharging. These nonlinear charging dynamics are understood through an analytic approximation rooted in first-principles. We show how short-and long-term potentiation and depression, frequency-dependent plasticity, and chemical-electrical signal coincidence detection (acting like a chemical-electrical AND logic gate), akin to the NMDA mechanism for Hebbian learning in biological synapses, can all be emulated with a single channel. |
---|---|
ISSN: | 2331-8422 |